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1. Introduction 

Optical vortex carrying Orbital Angular 
Momentum  (OAM) has potential to increase 
capacity in the future optical network. For OAM  
multiplexing, it is necessary to generate and handle 
plural OAM modes. Elastic vortex waves along an 
optical fiber can be used for mode conversion 
between OAM modes through acousto-optic(AO) 
interaction. [1-4] In this study, we discuss elastic 
vortex waves and the frequency required for the AO 
mode conversion between OAM modes. 
 
2. OAM mode conversion by elastic wave  

According to previous study, the 
interaction between elastic waves and optical waves 
causes optical mode conversion in an optical fiber.  
This study, we consider vortex waves formed from 
orthogonal flexural waves as shown in Fig.1. We 
consider a graded index fiber as an optical fiber.  
The incident OAM mode is converted to the other 
OAM mode along the fiber.  

Fig. 1 OAM mode conversion by elastic vortex 
waves 

 
3. Flexural wave dispersion relation 

We analyze flexural wave in the 
cylindrical waveguide to obtain the dispersion 
relation. The displacement is expressed by 
equations (1) - (3) . 

 
Here,   is the angular frequency, r is the 
cylindrical waveguide radial direction length, 0k  
is the propagation constant in the z direction, and 
nJ  is the Bessel function of the first kind and of 

order n, '
nJ  denotes its derivative with respect to 

the argument , and dk  and tk  are given by 
 

 (4) 
 
 

 (5) 
 
where the bulk dilatational and transverse wave 
velocities dc  and  tc  are given by the density 

33 /1020.2 mkg , Lame’s constants 
10106.1  , and 101012.3   through 

 
(6) 

 
 
            (7) 

 
So, the following determinant (8) is given from the 

boundary conditions for the stress tensor. 

 
Here, )(/)()( 1 qJqqJq nnn   and 22 2/ tccx  . 
The dispersion relation is obtained as shown in 
Fig.2. 

 
Fig. 2 Mode dispersion relation of flexural mode  
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4. Phase matching condition 
From the phase matching condition for the 

mode coupling between the optical waves and 
elastic waves, and dispersion relation of the elastic 
waves, the frequency that mode coupling occurs is 
obtained. The phase matching condition is given by 

 
       .　kpl     (9) 
 
Here,   is the propagation constant of optical 
wave. k is the propagation constant of elastic wave. 
From this equation and Fig.2, we can identify 
elastic frequency that executes mode conversion of 
optical mode. We consider a graded index fiber.  
Then, the propagation constant is given by  
 

.)12()0(2)0( 0
22

0 　  mgnn (10) 
 

Here, 0  is the optical propagation constant in 
vacuum. )0(n  is the refractive index of center of 
the fiber and g is the focusing constant. m is the 
vortex rotation order and   is the number of 
nodes in radial direction. As an example, we 
consider m=0 → 1 and  =1. The optical 
wavelength is 1550nm and we assume )0(n =1.46. 
The graph obtained from equation (9) is Fig.3. The 
intersection points of Fig.3 are about 1.2MHz and 
0.80MHz. 

 
Fig. 3 Frequency for OAM mode conversion 
 
5. Elastic vortex wave 

Based on the equation of displacement, 
we confirmed whether the flexural wave is a vortex  
wave by making graphs of intensity and phase. It 
can be confirmed that the flexural wave is the 
vortex wave when synthesized by orthogonalizing 
x-axis component and y-axis component of 

displacement with phase difference of 
2


. 

 
Fig. 4 Elastic vortex intensity of zu  component   
 

 
Fig. 5 Elastic vortex phase of zu  component 
 
6. Conclusion  

In this study, we found that the ultrasonic 
wave frequency for mode coupling are 1.2MHz or 
0.80MHz. We showed a vortex elastic wave formed 
from flexural waves. As a future plan, we 
investigate AO coupling efficiency for OAM mode 
conversion.   
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