
detected by the needle piezoelectric transducers 
constituting a tripod. A laser beam was focused on 
the surface of the resonating specimen. A Doppler 
interferometry detects the frequency shift of the 
reflected beam and measures vertical component of 
velocity at the focal point. Vertical-velocity 
distributions are obtainable by scanning the whole 
surface of the specimen. The velocity distribution 
can be converted into the normal-displacement 
distribution due to harmonic oscillation, where 
there is a proportional relationship between 
maximum velocity and displacement. The mode 
identification is achieved by comparing measured 
and calculated displacement distribution because 
each resonant mode shows unique distribution.  

We used high-quality β-Ga2O3 monocrystal, and 
three rectangular-parallelepiped specimens were 
prepared. The typical dimensions are 3.4 mm, 4.9 
mm, and 3.6 mm. (The b and c axes are parallel to 
the 4.9-mm and 3.6-mm sides, respectively.) The 
measured mass density is 5.709 g/cm3. We 
deposited 100-nm Al on the specimen to reflect the 
laser beam. 
  
3. Result and Discussion 
 

 We estimated the elastic constants of β-Ga2O3 
through ab-initio calculation, which provided 
theoretical displacement distributions. Figure 2 
compares calculated and measured displacement 
distributions on a resonating crystal surface. The 
agreement between them is enough to 
unambiguously identify the resonant modes. 

Similar consistency appears for many other modes, 
which realizes the complete mode identification for 
β-Ga2O3. Hence, the RUS/Laser technique allows 
us to accurately determine elastic constants of 
β-Ga2O3 via the inverse calculation; the differences 
between the resultant and first-principle values of 
elastic constants are less than 3.2 %, including the 
off-diagonal components.  
 
4. Conclusion 
 
 We measured elastic constants of β-Ga2O3, which 
doesn’t have any reported values of them, by 
performing the unambiguous resonant-mode 
identification via the RUS/Laser technique. The 
measurements indicate that it is possible to observe 
the displacement distribution on a surface of the 
monoclinic material and precisely determine all the 
independent elastic constants using the technique.  
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Fig. 2 Examples of calculated (left) and measured 
(right) displacement distributions for the β-Ga2O3 
specimen. The bright and dark zones represent 
antinode and node, respectively. The values below 
the drawings indicate measured resonance 
frequencies. 
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1. Abstract 

The crystalline silicon oxynitride (Si2N2O) can be 
synthesized by heating silicon and quartz powder in 
nitrogen atmosphere at 1,450 °C[1]. Its crystal 
structure was discovered in 1960s[1], which is 
illustrated in Fig. 1(a). 
 Si2N2O has been studied as a favorable 
high-temperature structural ceramic because of its 
good heat characteristics. For example, it exhibits 
high oxidation resistance and high flexural strength 
up to 1400 °C[2]. In addition, it shows low thermal 
expansion coefficient (3.5×10-6 K-1) and 
extraordinary thermal shock resistance[2]. On the 
other hand, its mechanical properties are hardly 
studied, including its elastic constants. 
 In this study, we determine all of the independent 
elastic constants of Si2N2O by ab-initio calculation. 
In parallel, we determine the elastic constants of 
crystalline SiO2 (α-quartz) and β-Si3N4 for 
comparison. These three Si-O-N compounds have 
similar structures in terms of being made of 
tetrahedron centering around Si atoms. 
 
2. Materials 
 Si2N2O has an orthorhombic symmetry, belonging 
to the space group Cmc21

[1]. As shown in Fig. 1(a), 
it consists of [SiN3O] tetrahedron connecting with 
each other via shared vertices. Because of the 
symmetry, Si2N2O has nine independent elastic 
constants: 
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 SiO2 has several crystal structures, and we chose 
α-SiO2 as the comparison, because of its high 
stability at room temperature and atmospheric 
pressure. As shown in Fig. 1(b), crystalline α-SiO2 
has trigonal symmetry, showing six independent 

elastic constants. Its space group is P3121. 
 Si3N4 has two principal types of crystal structures 
(α-Si3N4 and β-Si3N4), and here we chose β-Si3N4 as 
a calculation target. Its shows hexagonal symmetry 
with five independent elastic constants. Space 
group of β-Si3N4 is controversial and possibly be 
P63/m or P63

[3]. Here, we chose the P63 and 
performed the calculation, and we show its 
structure in Fig. 1(c). 
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(a) Si2N2O

(b) -SiO2

(c) -Si3N4  
Fig. 1 The crystal structures of (a)Si2N2O, 

(b)α-SiO2 and (c)β-Si3N4. The blue, silver and red 
balls represent silicon, nitrogen and oxygen atoms, 

respectively. 
 

2. Computational method  
Here, we used the Vienna Ab initio Simulation 

Package (VASP) to determine the lattice constants 
and elastic constants[4]. The VASP employs the 
Projector Augmented Wave (PAW) method, which 
allows us to calculate all electrons (including core 
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electrons). As exchange correlation potentials, we 
used both Local Density Approximation (LDA) and 
Generalized Gradient Approximation (GGA) to 
compare with the experimental values. The cutoff 
energy and k-point meshes are 1000 eV and 
10×10×10 respectively. 

First, we performed the relaxation calculation to 
the atomic sites and lattice constants at the ground 
state. In this case, the volume, cell sharp and atomic 
position of unit cell   are changed so that unit cell 
has the minimum total energy. 

Next, the elastic constants Cij are calculated. To 
determine them, strains are applied to the unit cell 
up to ±1%, and the total energy are calculated as a 
function of the strain. The total energy can be 
written as follows, ignoring the higher order terms; 

 
I JI

JIIJII SSCSVVESVE
,

00 )()0,(),(   

…(2) 
 Here, V, τ and S mean the cell volume, the residual 
stress and the engineering strain respectively. 
Finally, elastic constants can be determined by 
fitting a quadratic function. 
 
3. Result 
 By the relaxation calculation, we obtained the 
lattice constants as shown in Table 1. About Si2N2O, 
compared experimental values with the calculations 
in this study, LDA calculation gives closer values 
and more appropriate than GGA. 
 

Table 1 Lattice constants obtained by the relaxation 
calculation and experimental value. (Å) 

  a b c 

Si2N2O 
LDA 8.871 5.489 4.838
GGA 8.967 5.502 4.897

Experimental[1] 8.843 5.473 4.835

α-SiO2 

LDA 4.882 a=b 5.381
GGA 5.037 a=b 5.525

Experimental[5] 4.913 a=b 5.405

β-Si3N4 

LDA 7.578 a=b 2.893
GGA 7.663 a=b 2.926

Experimental[6] 7.595 a=b 2.902
 

Next, elastic constants of these three crystals were 
determined by the LDA calculation. Those of 
α-SiO2 are: C11=72.9, C12=7.6, C13=7.8, C14=−0.1, 
C33=96.6 and C44=52.2 GPa. Those of β-Si3N4 are: 
C11=422.9, C12=199.3, C13=117.7, C33=553.9 and 
C44=99.1 (in units of GPa). 
 Whereas, elastic constants of α-SiO2 are known as: 
C11=86.76, C12=7.06, C13=11.90, C14=-17.98, 
C33=105.41 and C44=58.27 GPa[7]. Those of β-Si3N4 
are also known as: C11=433, C12=195, C13=127, 
C33=574 and C44=108 GPa[8]. There are only slight 
differences between experimental values and 

calculated values, thus calculations are sufficiently 
reliable. 
 The elastic constants of Si2N2O are: C11=312.4, 
C12=82.5, C13=53.8, C22=244.8, C23=36.8, 
C33=316.6, C44=132.7, C55=59.2 and C66=76.9 GPa. 
 These compounds have different symmetry and we 
can’t compare simply these values. We therefore 
apply the Hill approximation to calculate their 
direction-averaged (isotropic) elastic constants. 
After applying Hill approximation, we focus on 
Young’s modulus (E). In Fig. 2, N/(O+N) represents 
atomic ratio of nitrogen. From Fig. 2, E of averaged 
Si2N2O lays between those of α-SiO2 and β-Si3N4. 
In addition, these E nearly lay on a straight line 
(dash line in Fig. 2). 
 
4. Conclusion 
 The elastic constants of crystalline silicon 
oxynitride (Si2N2O) were theoretically calculated. 
Its averaged Young’s modulus shows strong 
correlation to the nitrogen concentration, and it will 
be estimated from Young’s moduli of α-SiO2 and 
β-Si3N4 crystals if we know the nitrogen content 
regardless of their different crystal structures. 
 
 

 
 
 
 
 
 
 
 
 

 
Fig.2 Nitrogen atoms concentrations dependence of 

averaged Young’s modulus. 
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