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Variational method with Legendre-basis-functions:

calculation of acoustic phonon modes in nanowires
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1. Introduction

During the last decade, various kinds of
nanowires (NWs) have been synthesized. The
properties of the NWs are often superiour to the
bulk’s ones, which lead to their applications in
many areas. Very recently, a lot of NWs with
complicated  structures such as  nanowire
superlattices (NWSLs) and radial nanowire
heterostructures have been realized [1, 2]. To
improve electronic devices, e.g. their high electron
mobility and  high thermal conductivity,
understanding acoustic phonons in the NWs is of
imporatnce. In addition, these structures yield
interesting physical effects on phonon properties.

Acoustic phonons in these structures are
expected to show reduced-dimensional behaviour
depending on thier geometry. In general, it is
difficult to obtain acoustic phonon modes in such
wire structures due to the longitudinal acoustic
(LA) and transverese acoustic (TA) wave coupling
occuring at the wire surface or interfaces of the
nanowires. For example, even in rectangular cross
section isotropic NWs, the LA and TA phonons
coupling makes it difficult to derive phonon modes
and their spectra analytically.

A numerical method for deriving the free
vibrational modes of anisotropic object with
arbitrary shape was developped in the resonant
ultrasound spectroscopy [3]. In this method, the
displacement vectors are expanded in terms of a set
of basis functions. Since products of x, y, and

z are used as basis functions, this scheme is called
xyz algorithm. This method was shown to be

appricable for free-standing plain nanowires [4] and
nanowire superlattices [5]. For the NWs with
complicated sturucture, on the other hand, a lot of
basis functions are needed to express the lattice
displacement vectors.

To carry out an accurate calculation, in the
present study, we use the Legendre functions as
basis functions instead of the powers of the
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Cartesian coordinates.

As numerical examples, we examine acoustic
phonon modes in a hollow GaN NW and a hollow
GaN/AIN NWSL with a circular cross-section. We
compare the calculated eigenfrequencies with those
obtained by the xyz algorithm, and discuss the

efficiency of this method.

In the present proceedings, we give a brief
sketch of our fomulation and show the results
calculated for a hollow GaN NW.

2. Method of Calculation

The displacement vectors u, , which are
solution of the elastic equation
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with boundary conditions
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at surface, make the Lagrangian defined by
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stationary. In Eq. (3), we expand u; in terms of
the basis functions ¢, ,

u, = Z a9, 4)
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Here, {2 means a truncated one of the complete
set of the basis functions. The stationary condition
imposed on Eq. (3) becomes &L/da,, =0, which

gives
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where
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Solving (5), we can determine the eigenmodes in
the free-standing NWs.

For simplicity, in the present proceedings, we
show the basis function selected for the hollow NW
with circular cross-section:

@, (k,1) = \/—% P, (%)f; [%) & (8)

Here, £ is the wave number in the longitudinal
direction, P is the Legendre function, R

denotes the radius of the wire, and S 1is the
cross-sectional area of the hollow structure. The
basis functions are specified with m,n, that is,

a=(m,n). In the plain wire stiffness tensor

C,(2) and mass density p(z) are independent of

the coordinate.
Substituting (8) into (7), we have
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where g =(m',n"). This integral depends on the

geometry of the cross-section of the wire. In the
complicated structures, Eq. (9) does not give the
orthogonal relation. In the present study, we
successfully derived the analytical expressions for
this and also Eq. (6). However, we cannot show
them here because these are legthy.

In general, many basis functions are needed to
represent the displacement fields. By utilizing
group theory and classifying the phonon modes, the

number of basis functions can be reduced. The C,,

symmetry is included in most NWs. In this case, the
modes are classified into A;, Az, Bi, B> modes.
Then, only a quarter of basis functions are
necessary, and the number of matrix elements we
should calculate becomes one sixteenth.

By using the symmetry-adapted basis functions,
the dispersion relations and phonon displacements
are calculated for each phonon mode. For NWs
with high symmetry, each classified mode is further
classified. In the calculation, it is convenient to
classify one of the above modes according to the
symmetry of corresponding eigenvector calculated
from Eq. (5).

3. Numerical results and discussions

We show in Fig.l1 the phonon dispersion
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relations calculated for a hollow NW consisting of
wurtzite GaN. The ratio of the inner diameter (2r) of
the hollow circular cross section to the outer
diameter (2R) is assumed to be 0.5 in this example.

Subband structure exists in the dispersion
relation, because the wave vectors in the lateral
direction are discretized. The lowest four curves
correspond to the Bi, Bz, Az, and A; modes, as
shown in Fig. 1. The dispersion curves of the B,
and B, modes are doubly degenerated in the present
symmetry.
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Fig. 1 Phonon dispersion relations of the hollow NW
consisting of wurtzite GaN (/R =0.5).

4. Concluding remarks

We have developed a variational method with
symmetry-adapted Legendre basis functions. The
detailed explanation and comparison with the
dispersion relations obtained with different methods
will be given elsewhere.
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