
scattering: 

𝐼𝐼(𝑓𝑓) = 𝐴𝐴𝐴𝐴𝐴r(𝑓𝑓2+𝑓𝑓sh
2(1−𝑅𝑅))

(𝑓𝑓2−𝑓𝑓r∙𝑓𝑓sh)2+𝑓𝑓2(𝑓𝑓r+𝑓𝑓sh(1−𝑅𝑅))2     (1) 

Here, I is scattering intensity, f is frequency, fr is 
orientation relaxation frequency, and fsh is defined 
as 𝑓𝑓sh = [(𝜂𝜂 𝜂𝜂⁄ )𝑞𝑞2] (2𝜋𝜋)⁄ . Here  𝜂𝜂 , 𝜌𝜌 , 𝑞𝑞  are the 
shear viscosity, the density and the wavenumber, 
respectively. A is a proportionality constant. The 
values of fr, 𝜂𝜂, 𝜌𝜌, and 𝑞𝑞 are determined by the VV 
scattering measurement, by the viscometer, by the 
vibrating-tube densitometer, and by calculation 
from scattering angle and the laser wavelength, 
respectively. Thus, fitting parameters are A and R. 

Figure 2 shows 𝑇𝑇 𝑇 𝑇𝑇∗ dependence of R in pure 
5CB and 5CB-CCl4, mixtures, where T is the 
temperature. No distinct differences are observed 
even with addition of 0.10 mole CCl4. 

Figure 3 shows reduced relaxation spectra of 
shear viscosity at 𝑇𝑇 𝑇 𝑇𝑇∗ 15 K  in 5CB with 
addition of CCl4 at 0.10 mole fraction. The real part 
shows the plateau around 100 MHz. Reduction ratio 
of the reduced viscosity at the plateau value 
corresponds to R. Theoretical equation of frequency 
dependence of shear viscosity in which 
translational-orientational coupling is considered is 
given by 

𝜂𝜂∗ 𝜂𝜂0 = 1 − 𝑅𝑅 𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖 + 𝑓𝑓r

⁄                  (2) 

Here, 𝜂𝜂∗ = 𝜂𝜂′ − 𝑖𝑖𝑖𝑖" is complex shear viscosity, and 
η0 is the zero-frequency viscosity. Solid curves in 
Fig. 3 are the fitting curves with fitting parameter R.  

The values of R in 5CB-CCl4 mixtures at 
𝑇𝑇 𝑇 𝑇𝑇∗ ≈ 15K  are summarized in Table 1. The 
values of R in this study do not show significant 
decrease in contrast to those in our previous study 5. 

Results in 5CB-TPP mixtures are the almost the 
same as those obtained in 5CB-CCl4 mixtures. 
Significant decrease in R in mixtures in our 

previous studies 5,6 comes from insufficient 
preparation of light scattering equipment. 

In this study, we re-investigated the effect of 
non-nematogenic additives on R using VH 
heterodyne dynamic light scattering and frequency 
dependent shear viscosity measurements on 
5CB-CCl4 and 5CB-TPP mixtures. The values of R 
did not show significant decrease with addition 
non-nematogenic compounds in the concentration 
investigated in this study. 
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Fig. 2 Temperature dependence of R on 5CB-CCl4 
mixtures obtained by VH dynamic light scattering 
experiments 
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Fig. 3 Frequency dependence of reduced shear 
viscosity of 5CB with addition of 0.1 mole CCl4 at 
temperature above 15 K from the pseudo critical 
point. 
 
Table 1. The values of R in 5CB-CCl4 mixtures at 
𝑇𝑇 − 𝑇𝑇∗ ≈ 15K  in the previous study5 and in this 
study. 
 

mole 
fraction 
of CCl4 

VH 
dynamic 
light 
scattering a 

VH 
dynamic 
light 
scattering 

Frequency 
dependence 
of shear 
viscosity 

0 0.30 0.32 0.35 
0.05 0.20 0.30 0.35 
0.10 0.09 0.25 0.32 

a Ref. 5 
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1. Introduction 

During the last decade, various kinds of 
nanowires (NWs) have been synthesized. The 
properties of the NWs are often superiour to the 
bulk’s ones, which lead to their applications in 
many areas. Very recently, a lot of NWs with 
complicated structures such as nanowire 
superlattices (NWSLs) and radial nanowire 
heterostructures have been realized [1, 2]. To 
improve electronic devices, e.g. their high electron 
mobility and high thermal conductivity, 
understanding acoustic phonons in the NWs is of 
imporatnce. In addition, these structures yield 
interesting physical effects on phonon properties. 

Acoustic phonons in these structures are 
expected to show reduced-dimensional behaviour 
depending on thier geometry. In general, it is 
difficult to obtain acoustic phonon modes in such 
wire structures due to the longitudinal acoustic 
(LA) and transverese acoustic (TA) wave coupling 
occuring at the wire surface or interfaces of the 
nanowires. For example, even in rectangular cross 
section isotropic NWs, the LA and TA phonons 
coupling makes it difficult to derive phonon modes 
and their spectra analytically.  

A numerical method for deriving the free 
vibrational modes of anisotropic object with 
arbitrary shape was developped in the resonant 
ultrasound spectroscopy [3]. In this method, the 
displacement vectors are expanded in terms of a set 
of basis functions. Since products of x , y , and 
z  are used as basis functions, this scheme is called 
xyz algorithm. This method was shown to be 
appricable for free-standing plain nanowires [4] and 
nanowire superlattices [5]. For the NWs with 
complicated sturucture, on the other hand, a lot of 
basis functions are needed to express the lattice 
displacement vectors.  

To carry out an accurate calculation, in the 
present study, we use the Legendre functions as 
basis functions instead of the powers of the 

Cartesian coordinates.  
As numerical examples, we examine acoustic 

phonon modes in a hollow GaN NW and a hollow 
GaN/AlN NWSL with a circular cross-section. We 
compare the calculated eigenfrequencies with those 
obtained by the xyz  algorithm, and discuss the 
efficiency of this method.  

In the present proceedings, we give a brief 
sketch of our fomulation and show the results 
calculated for a hollow GaN NW.  

2. Method of Calculation 

The displacement vectors iu , which are 
solution of the elastic equation 

  2 0k
i ijk

j

uu C
x x


 

    
 (1) 

with boundary conditions 

  0ij jT n     (2) 
at surface, make the Lagrangian defined by  
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stationary. In Eq. (3), we expand iu  in terms of 
the basis functions  ,  

 i iu a  





    (4) 

Here,   means a truncated one of the complete 
set of the basis functions. The stationary condition 
imposed on Eq. (3) becomes / 0iL a    , which 
gives 

 2
, ,i iH a S a      , (5) 

where 

( ) ( )( )i ijkV
j k j k

H C z d
x x
 

 

 



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 

  
r r r  (6) 

and 

2P1-2



 ( ) ( ) ( )i i V
S z dV      

   r r . (7) 

Solving (5), we can determine the eigenmodes in 
the free-standing NWs. 

For simplicity, in the present proceedings, we 
show the basis function selected for the hollow NW 
with circular cross-section: 

 1( , ) ikz
m n
x yk P P e
R RS

       
   

r .  (8) 

Here, k is the wave number in the longitudinal 
direction, mP  is the Legendre function, R  
denotes the radius of the wire, and S  is the 
cross-sectional area of the hollow structure. The 
basis functions are specified with ,m n , that is, 

 ,m n  . In the plain wire stiffness tensor 
( )ijkC z  and mass density ( )z  are independent of 

the coordinate.  
Substituting (8) into (7), we have 

1 ,

i i

m n m nS

S

x y x yP P P P dS
S R R R R

  

 

 

       
       
       

  (9) 

where  ,m n   . This integral depends on the 
geometry of the cross-section of the wire. In the 
complicated structures, Eq. (9) does not give the 
orthogonal relation. In the present study, we 
successfully derived the analytical expressions for 
this and also Eq. (6). However, we cannot show 
them here because these are legthy. 

In general, many basis functions are needed to 
represent the displacement fields. By utilizing 
group theory and classifying the phonon modes, the 
number of basis functions can be reduced. The 2vC  
symmetry is included in most NWs. In this case, the 
modes are classified into A1, A2, B1, B2 modes. 
Then, only a quarter of basis functions are 
necessary, and the number of matrix elements we 
should calculate becomes one sixteenth.  

By using the symmetry-adapted basis functions, 
the dispersion relations and phonon displacements 
are calculated for each phonon mode. For NWs 
with high symmetry, each classified mode is further 
classified. In the calculation, it is convenient to 
classify one of the above modes according to the 
symmetry of corresponding eigenvector calculated 
from Eq. (5). 

3. Numerical results and discussions  

We show in Fig.1 the phonon dispersion 

relations calculated for a hollow NW consisting of 
wurtzite GaN. The ratio of the inner diameter (2r) of 
the hollow circular cross section to the outer 
diameter (2R) is assumed to be 0.5 in this example.  

Subband structure exists in the dispersion 
relation, because the wave vectors in the lateral 
direction are discretized. The lowest four curves 
correspond to the B1, B2, A2, and A1 modes, as 
shown in Fig. 1. The dispersion curves of the B1 
and B2 modes are doubly degenerated in the present 
symmetry.  

 

 
Fig. 1 Phonon dispersion relations of the hollow NW 

consisting of wurtzite GaN ( / 0.5r R  ).  

4. Concluding remarks 
We have developed a variational method with 

symmetry-adapted Legendre basis functions. The 
detailed explanation and comparison with the 
dispersion relations obtained with different methods 
will be given elsewhere.  
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