
 ( ) ( ) ( )i i V
S z dV      

   r r . (7) 

Solving (5), we can determine the eigenmodes in 
the free-standing NWs. 

For simplicity, in the present proceedings, we 
show the basis function selected for the hollow NW 
with circular cross-section: 

 1( , ) ikz
m n
x yk P P e
R RS

       
   

r .  (8) 

Here, k is the wave number in the longitudinal 
direction, mP  is the Legendre function, R  
denotes the radius of the wire, and S  is the 
cross-sectional area of the hollow structure. The 
basis functions are specified with ,m n , that is, 

 ,m n  . In the plain wire stiffness tensor 
( )ijkC z  and mass density ( )z  are independent of 

the coordinate.  
Substituting (8) into (7), we have 

1 ,

i i

m n m nS

S

x y x yP P P P dS
S R R R R

  

 

 

       
       
       

  (9) 

where  ,m n   . This integral depends on the 
geometry of the cross-section of the wire. In the 
complicated structures, Eq. (9) does not give the 
orthogonal relation. In the present study, we 
successfully derived the analytical expressions for 
this and also Eq. (6). However, we cannot show 
them here because these are legthy. 

In general, many basis functions are needed to 
represent the displacement fields. By utilizing 
group theory and classifying the phonon modes, the 
number of basis functions can be reduced. The 2vC  
symmetry is included in most NWs. In this case, the 
modes are classified into A1, A2, B1, B2 modes. 
Then, only a quarter of basis functions are 
necessary, and the number of matrix elements we 
should calculate becomes one sixteenth.  

By using the symmetry-adapted basis functions, 
the dispersion relations and phonon displacements 
are calculated for each phonon mode. For NWs 
with high symmetry, each classified mode is further 
classified. In the calculation, it is convenient to 
classify one of the above modes according to the 
symmetry of corresponding eigenvector calculated 
from Eq. (5). 

3. Numerical results and discussions  

We show in Fig.1 the phonon dispersion 

relations calculated for a hollow NW consisting of 
wurtzite GaN. The ratio of the inner diameter (2r) of 
the hollow circular cross section to the outer 
diameter (2R) is assumed to be 0.5 in this example.  

Subband structure exists in the dispersion 
relation, because the wave vectors in the lateral 
direction are discretized. The lowest four curves 
correspond to the B1, B2, A2, and A1 modes, as 
shown in Fig. 1. The dispersion curves of the B1 
and B2 modes are doubly degenerated in the present 
symmetry.  

 

 
Fig. 1 Phonon dispersion relations of the hollow NW 

consisting of wurtzite GaN ( / 0.5r R  ).  

4. Concluding remarks 
We have developed a variational method with 

symmetry-adapted Legendre basis functions. The 
detailed explanation and comparison with the 
dispersion relations obtained with different methods 
will be given elsewhere.  
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1. Background 
  Elastography is one of diagnostic methods to 
evaluate human tissue noninvasively[1]. Dynamic  
elastography using optical coherence tomography 
(OCT) is expected to eastimate elastic property of 
small region near surface (< several mm) with a 
spatial resolution of less than 10 m[2][3]. There are 
few studies about propagation characteristics of 
shear wave in subcutaneous region. In this study, 
Finite-difference time-domain（FDTD）method is 
applied to analyze propagation characteristics of 
shear wave. 

2. FDTD simulation 
  Navie-stokes equations expressed in Eqs. (1)-(3) 
were used in 2-D FDTD simulation[4]. Here, v is 
particle velocity and is stress. 

Eqs. (1)-(3) were expressed as Eqs. (4)-(6) by using 
difference method. In the simulation, staggered grid 
shown in Fig.1 was defined. Stress was applied 
with bursted sine wave (500 Hz, 6 waves) to an 
isotropic and homogeneous medium and generated 
shear wave was observed. Young’s moduli E of 50 
and 75 kPa and viscosity  of 0.22 Pa・s were used, 
where E = 3. Vibration with the frequency of 500 
Hz was added at t = 15 ms. Vibration source is 
shown in Fig.1 and simulation area is shown in 
Fig.2. Particle velocityes at x = 0 and 5 mm were 
observed and propagation speeds of shear wave 
were calculated. 

Fig. 1 The subject of the simulation and 
diagram of staggered grid. 
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Fig. 2 Area of FDTD simulation.

  Courant constant, which is stable condition, 
was calculated with Eq. (7). 

α � ���
�� � 1

√2    (7) 
Here, c = shear wave speed, �� � 2�� � 1��� m, 
�� � 2�� � 1���  s, and = 0.5(@75 kPa) were 
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used. 

3. Experimentation of Young’s moduli with OCT 
  Experiment was conducted by using OCT system 
in the almost same condition with FDTD simulation. 
Experimental setup is shown in Fig. 3. 

 
Fig. 3 Experimental system of OCE. 

Elastic phantoms of 50 and 75 kPa, size of 10 x 
10 x 5 cm3 (OST) were used as specimens. A matal 
plate with thicknes of 1 mm (depth direction) and 
width of 50 mm (deep diection) was connected a 
vibrator. The plate was set to the specimens so that 
vibration sourse is a line sourse. Shear waves were 
measured by OCT system (santec, IVS-2000) and 
sound sppeds were estimated. 
  To syncronize start time of vibration and 
measuring time of the OCT, we modified the OCT 
system. A data collection borad (NI, PCIe-6320) 
and BNC connector (NI, BNC-2110) were used to 
syncronize a function generator, witch is connected 
an amp and the vibrator, and data acquisition sytem   
(software: NI, Labview) installed in a PC. The 
system was modified as following. Timing pulse 
was applied to from the PC to the function 
generator. At the same time, data acquisiton was 
started in the PC. The program was also modified 
so that one line acquisition (M-mode) at any line x. 
Using the system, Vibrations were measued at x = 0 
and 5 mm, where vibration was added at t = 15 ms. 
M-mode data were aquired by the symclonized 
OCT system. Propagation speeds of shear waves 
were calculated from arrival time at each point. 
Young’s modulus was calculated by Eq. (8). 

� � ����, (8) 
wher  is density and c is propagation speed. 

4. Results 
Fig. 4 shows FDTD simulation results and Fig. 5 

shows M-mode images acquired by the OCT 
system. Since Fig. 4 illustrates � � ��� � ���, the 
wave numbers of FDTD simulation were twice 
those of OCT images. From the reulsts, we could 
sucecfully produce shear wave in FDTD simlation 
and observed waves with the syncronized OCT 
system. Summarized Young’s moduli are shown in 
Table 1. Young’s moduli were almost the same in 

the calculation and the experiment. 

5 . Summary 
  We found that FDTD simulation and the 
syncronized OCT system worked almost properly to 
estimate Young’s modulus. Vistocity and 
inhomogeneous media will be considered as future 
study. 

Fig. 4 Change of particle velocity with time.

Fig. 5 Change of OCT image with time.
Table 1 Summary of Young’s moduli 

      FDTD OCT 
75 kPa 75 kPa 75 kPa 
50 kPa 51 kPa 52 kPa 
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