
velocity. 
In this calculation, it can be obtained using 

cubic Hermite interpolation and linear 
interpolation like Eq. (4) and (5). We calculate vy of 
next time step using the cubic Hermite interpolation.  

 
 
 
Additionally, in the type-M CIP method we 

calculate Hx ±  of next time step using the linear 
interpolation.  

 
 

Here, the coefficient C± and CL± is the same as Eq. 
 (6), (7) and (8). However, 𝜉𝜉 and 𝜒𝜒 are expressed 
as follows. 
 
 
The sign of 𝜉𝜉 depends on background flow direction.  

Calculation of differential values of the 
particle velocity in the perpendicular direction are 
also the same procedure as Eq. (9) and (10). 
4. Computational results 

For the parameters in this analysis, the grid 
size is ∆𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥m, time step is ∆𝑡𝑡 𝑡
60μs, the number of grid is 𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁 = 201, 
the number of time step is 𝑁𝑁𝑁𝑁 = 200 and sound 
speed is 𝑐𝑐 𝑐 343m/s. 

 Figures 1 and 2 shows three-dimensional 
acoustic propagation simulation with background 
flow speed (Ux, Uy, Uz,) = (−0.3𝑐𝑐, 0.1𝑐𝑐, 0.3𝑐𝑐) using 
the type-C CIP method (Fig.1) and the type-M CIP 
method (Fig.2) by sound pressure distribution. From 
Figs. 1 and 2, we ascertain the sound wave 
propagates considering the background flow. 

Figure 3 shows time-pressure waveform at the 
sound receiving point (7.38m, 7.38m, 7.38m) using 
the type-C CIP method, the type-M CIP method, the 
LEE method and exact solution[5] with background 
flow speed Ux = Uy = Uz = 0.3𝑐𝑐. Here, finer grids 
(0.02m and 0.03m) are also used in calculation by the 
LEE method. From Fig. 3, the LEE method shows a 
large error from exact solution. However, the type-C 
CIP method and type-M CIP method is almost 
consistent with the exact solution. 

Finally, Figure 4 shows the comparison of 
calculation time by each method. The calculation 
environment uses OpenMP, and the number of threads 
is set to 8. From Fig.4, the type-M CIP method had the 
calculation time of about 0.62 times than that of the 
type-C method. 
5. Conclusion 
      We examined the three-dimensional acoustic 
simulation with background flow using the CIP 
method. These results suggest that CIP analysis 
provides higher accuracy for calculating the 
propagation effect with background flow than that 

obtained using the conventional scheme. 
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𝑣𝑣𝑦𝑦
𝑛𝑛+1(𝑖𝑖) =

𝐶𝐶1±𝑣𝑣𝑦𝑦
𝑛𝑛(𝑖𝑖 ∓ 1) + 𝐶𝐶2±𝑣𝑣𝑦𝑦

𝑛𝑛(𝑖𝑖)
+𝐶𝐶3±𝜕𝜕𝑥𝑥𝑣𝑣𝑦𝑦

𝑛𝑛(𝑖𝑖 ∓ 1) + 𝐶𝐶4±𝜕𝜕𝑥𝑥𝑣𝑣𝑦𝑦
𝑛𝑛(𝑖𝑖).  (9) 

(10) 𝜕𝜕𝑦𝑦𝑣𝑣𝑦𝑦
𝑛𝑛+1(𝑖𝑖) = 𝐶𝐶1±

𝐿𝐿 𝜕𝜕𝑦𝑦𝑣𝑣𝑦𝑦
𝑛𝑛(𝑖𝑖 ∓ 1) + 𝐶𝐶2±

𝐿𝐿 𝜕𝜕𝑦𝑦𝑣𝑣𝑦𝑦
𝑛𝑛(𝑖𝑖) 

𝜉𝜉± = ∓𝑈𝑈𝑥𝑥∆𝑡𝑡,     𝜒𝜒 = 𝑈𝑈𝑥𝑥∆𝑡𝑡/∆𝑥𝑥 (11) 

(a) t = 50∆t [s] 
  

(b) t = 150∆t [s] 
  Fig. 1 Spatial distribution of sound pressure used in 

the type-C CIP method.  

(a) t = 50∆t [s] 
  

(b) t = 150∆t [s] 
  Fig. 2 Spatial distribution of sound pressure used in 

the type-M CIP method.  

Fig. 3 Sound pressure waveform by the type-C CIP 
method, the type-M CIP method, the LEE method 
and exact solution.  

Fig. 4 Comparison of calculation time. 
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1. Introduction 

The finite-difference time-domain (FDTD) 
method [1] is widely used to analyze the sound wave 
propagation.  In some derivative methods of FDTD 
method, the compact explicit FDTD (CE-FDTD) 
method [2-4] recently attracts much attention 
because of its high-accuracy.  It is a wave equation 
based scheme and a high-accuracy version of the 
standard FDTD method.  However, it is diffcicult to 
analyze sound wave propagation in density varing 
media by the CE-FDTD method because the density 
does not appear in the wave equation explicitly.  In 
this study, the density variation is implemented in the 
3-D CE-FDTD method.  Some demonstrations are 
carried out for the three dimensional sound wave 
propagation.   
 
2. Theory 

The 3-D wave equation on the sound pressure 
𝑝𝑝 is given as 

1
𝑐𝑐$

%
𝜕𝜕%𝑝𝑝
𝜕𝜕𝑡𝑡% =

𝜕𝜕%𝑝𝑝
𝜕𝜕𝑥𝑥% +

𝜕𝜕%𝑝𝑝
𝜕𝜕𝑦𝑦% +

𝜕𝜕%𝑝𝑝
𝜕𝜕𝑧𝑧% 																									(1) 

where 𝑐𝑐$  is the sound speed.  In the CE-FDTD 
method, the wave equation is directly discretized on 
the collocated grid on the basis of the central finite-
difference method.  There are 27 grid points or 
nodes in a discretized cell of the CE-FDTD method, 
as shown in Fig. 1.  The grid intervals of x-, y-, and 
z-directions are assumed to be all the same, Δ. 

Considering not only the axis directions but also the 
face diagonal and the space diagonal directions, Eq. 
(1) is discretized as [2] 

𝛿𝛿1
%𝑝𝑝2,4,5

6 = 𝜒𝜒% 𝛿𝛿8
% + 𝛿𝛿9

% + 𝛿𝛿:
% + 𝑎𝑎 𝛿𝛿8

%𝛿𝛿9
% +

𝛿𝛿9
%𝛿𝛿:

% + 𝛿𝛿:
%𝛿𝛿8

% + 𝑏𝑏𝑏𝑏8
%𝛿𝛿9

%𝛿𝛿:
% 𝑝𝑝2,4,5

6   (2) 

where 𝑝𝑝2,4,5
6  represents the sound pressure at the 

grid point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑖𝑖Δ, 𝑗𝑗Δ, 𝑘𝑘Δ) at time 𝑡𝑡 = 𝑛𝑛Δ𝑡𝑡, 
Δ𝑡𝑡 is time step, 𝜒𝜒 = 𝑐𝑐$Δ𝑡𝑡/Δ is the Courant number, 
𝑎𝑎 and 𝑏𝑏 denote numerical parameters.  𝛿𝛿%  is an 
operator on the central finite difference.  For 
example,  

𝛿𝛿8
%𝑝𝑝2,4,5

6 = 𝑝𝑝2CD,4,5
6 − 2𝑝𝑝2,4,5

6 + 𝑝𝑝2GD,4,5
6  (3) 

In the CE-FDTD method, there are some derivative 
schemes by adjusting the parameters 𝑎𝑎 and 𝑏𝑏.  In 
the case of 𝑎𝑎 = 0, 𝑏𝑏 = 0, the scheme is well known 
as the standard leapfrog (SLF) scheme.  The most 
accurate scheme is the interpolated wideband (IWB) 
scheme (𝑎𝑎 = 1/4, 𝑏𝑏 = 1/16) in which the cut-off 
frequency is in agreement with the Nyquist 
frequency.   

For the density variation, it is necessary to 
begin the formulation from the continuity equation 
and the equation of motion, because the density is 
not appeared in the wave equation explicitly.  In 
these governing equations, the particle velocity is 
defined on the center of the grid points, so the density 
𝜌𝜌 is evaluated as the average between the adjacent 
cells as shown in Fig. 2.  Consequently, the central 
differences in Eq. (2) are rewritten as 

𝛿𝛿8
%𝑝𝑝2,4,5

6 = 2𝜌𝜌2,4,5
LMNO,P,Q

R GLM,P,Q
R

SMNO,P,QGSM,P,Q
−

LM,P,Q
R GLMTO,P,Q

R

SM,P,QGSMTO,P,Q
 (4) 

 

 
 

Fig. 2 Cells of CE-FDTD method and the 
definition of density (illustrated in 2-D). 
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Fig. 1 Cell used in the CE-FDTD method consists 
of 27 grid points. 
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𝛿𝛿8
%𝛿𝛿9

%𝑝𝑝2,4,5
6 = 2𝜌𝜌2,4,5

UV
WLMNO,P,Q

R GUV
WLM,P,Q

R

SMNO,P,QGSM,P,Q
−

UV
WLM,P,Q

R GUV
WLMTO,P,Q

R

SM,P,QGSMTO,P,Q
     (5) 

𝛿𝛿8
%𝛿𝛿9

%𝛿𝛿:
%𝑝𝑝2,4,5

6 = 2𝜌𝜌2,4,5
UV

WUX
WLMNO,P,Q

R GUV
WUX

WLM,P,Q
R

SMNO,P,QGSM,P,Q
−

UV
WUX

WLM,P,Q
R GUV

WUX
WLMTO,P,Q

R

SM,P,QGSMTO,P,Q
    (6) 

where𝜌𝜌2,4,5  denotes the density of cell on the grid 
point (𝑖𝑖, 𝑗𝑗, 𝑘𝑘). 
 
3. Numerical experiments  

Figure 3 shows a 3-D model for the density 
variation.  The base medium is assumed to be water 
( 𝜌𝜌D =1000 kg/m3, 𝑐𝑐D =1500 m/s), and another 
medium is 𝜌𝜌% =3000 kg/m3, 𝑐𝑐D =1500 m/s.  The 
grid size is Δ = 1 mm, the time step is Δ𝑡𝑡 = 0.667 
𝜇𝜇s, so the Courant number is 𝜒𝜒 = 1.  A Gaussian 
pulse with width of 33.3	𝜇𝜇s is radiated from the point 
source S, and received at R1 and R2.  Figure 4 
shows the sound pressure distributions when 𝑡𝑡=40, 
80, 120, and 160𝜇𝜇s.  There is a reflection observed 
at the interface between two media.   

Figure 5 shows the calculated sound pressure 
waveforms at the receiving points R1 and R2.  It is 
confirmed the reflected and transmitted waves.  
The reflection coefficient and the transmission 
coefficients are then estimated from calculated 
waveforms.  Figure 6 shows the numerical error 
against the CFL numbers.  The error for the 
transmission coefficient is same with the reflection.  
As the CFL number increases, the error becomes 
small.  The reason of large error in small CFL 
number has responsible the numerical dispersion 
error.  It is confirmed that the present formulation 
for density variation is valid.  
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Fig. 3 Numerical model. 

 
 

Fig. 4 Sound pressure distributions. 

 
 

Fig. 5 Calculated waveforms at the 
receiving points R1 and R2. 

 
 

Fig. 6 Estimated error for the reflection 
coefficient against theoretical value. 
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