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1. Introduction

The finite-difference time-domain (FDTD)
method [1] is widely used to analyze the sound wave
propagation. In some derivative methods of FDTD
method, the compact explicit FDTD (CE-FDTD)
method [2-4] recently attracts much attention
because of its high-accuracy. It is a wave equation
based scheme and a high-accuracy version of the
standard FDTD method. However, it is diffcicult to
analyze sound wave propagation in density varing
media by the CE-FDTD method because the density
does not appear in the wave equation explicitly. In
this study, the density variation is implemented in the
3-D CE-FDTD method. Some demonstrations are
carried out for the three dimensional sound wave
propagation.

2. Theory

The 3-D wave equation on the sound pressure

p is given as
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where ¢, is the sound speed. In the CE-FDTD
method, the wave equation is directly discretized on

the collocated grid on the basis of the central finite-
difference method. There are 27 grid points or
nodes in a discretized cell of the CE-FDTD method,
as shown in Fig. 1. The grid intervals of x-, y-, and
z-directions are assumed to be all the same, A.

Fig. 1 Cell used in the CE-FDTD method consists
of 27 grid points.
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Considering not only the axis directions but also the
face diagonal and the space diagonal directions, Eq.
(1) is discretized as [2]

6Epli = x*[(62 + 63 + 62) + a(826% +
8282 + 6262) + b8E6362|plk )

where p{_lj,k represents the sound pressure at the
grid point (x,y,z) = (iA, jA, kA) at time t = nAt,
At is time step, y = coAt/A is the Courant number,
a and b denote numerical parameters. &2 is an
operator on the central finite difference.  For
example,

SZplik = Plvvjk — 2Pk T Pimvje ()
In the CE-FDTD method, there are some derivative
schemes by adjusting the parameters a and b. In
the case of a = 0,b = 0, the scheme is well known
as the standard leapfrog (SLF) scheme. The most
accurate scheme is the interpolated wideband (IWB)
scheme (a =1/4,b = 1/16) in which the cut-off
frequency is in agreement with the Nyquist
frequency.

For the density variation, it is necessary to
begin the formulation from the continuity equation
and the equation of motion, because the density is
not appeared in the wave equation explicitly. In
these governing equations, the particle velocity is
defined on the center of the grid points, so the density
p is evaluated as the average between the adjacent
cells as shown in Fig. 2. Consequently, the central
differences in Eq. (2) are rewritten as
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Fig. 2 Cells of CE-FDTD method and the
definition of density (illustrated in 2-D).
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Fig. 3 Numerical model.
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wherep; j . denotes the density of cell on the grid
point (i,],k).

3. Numerical experiments

Figure 3 shows a 3-D model for the density
variation. The base medium is assumed to be water
( p; =1000 kg/m’, c; =1500 m/s), and another
medium is p,=3000 kg/m’, ¢;=1500 m/s. The
grid size is A = 1 mm, the time step is At = 0.667
us, so the Courant number is y = 1. A Gaussian
pulse with width of 33.3 us is radiated from the point
source S, and received at R1 and R2. Figure 4
shows the sound pressure distributions when t=40,
80, 120, and 160us. There is a reflection observed
at the interface between two media.

Figure 5 shows the calculated sound pressure
waveforms at the receiving points R1 and R2. It is
confirmed the reflected and transmitted waves.
The reflection coefficient and the transmission
coefficients are then estimated from calculated
waveforms. Figure 6 shows the numerical error
against the CFL numbers. The error for the
transmission coefficient is same with the reflection.
As the CFL number increases, the error becomes
small. The reason of large error in small CFL
number has responsible the numerical dispersion
error. It is confirmed that the present formulation
for density variation is valid.
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Fig. 4 Sound pressure distributions.
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Fig. 5 Calculated waveforms at the

receiving points R1 and R2.
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Fig. 6 Estimated error for the reflection
coefficient against theoretical value.
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