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The importance of the nucleation and growth 
phenomena that control the solidification of castings 
on the mechanical properties and soundness of cast 
iron cannot be overemphasized. The graphite nuclea-
tion mechanism is directly related to the carbon con-
tent of the iron and the inoculation treatment. Over the 
years, a multitude of theories have been developed 
with the objective to explain the nucleation process of 
spheroidal graphite (SG) iron. The most important 
include the gas bubble theory [1], the graphite or 
carbon rich cluster theory [2,3], the salt-like carbide 
theory [4], the silicon carbide theory [5,6], the sul-
phide/oxide theory [7,8,9,10,11,12], the silicate theory 
[13,14,15,16]. 

The heterogeneous nucleation theory is focused on 
the non-metallic inclusions present in all commercial 
cast irons. These particles must satisfy some specific 
conditions to act as possible nucleation sites, includ-
ing: good crystallographic compatibility, low lattice 
disregistry or mismatch (no more than 3%), fine dis-
persion in the melt (1-3 ߤm) and high stability at 
elevated temperatures [14,16]. 

In this work, interrupted solidification experiments 
were conducted on spheroidal graphite irons (SG) at 
three different levels of carbon equivalent, with and 
without addition of a commercial inoculant. After 
superheating to 1500ºC, the induction-melted iron was 
treated into the pouring ladle with 1.1 mass % of a 
FeSiMg alloy (47.2% Si, 6% Mg, 1.15 Ca, 0.24% Al, 
0.3% Mn, and 0.88% RE) by the sandwich method. 
Standard thermal analysis cups were poured. The 
solidification of the iron in the cup was interrupted by 
quenching in brine at increasing times (immediately 
after pouring, after 10 seconds and after 60 seconds). 
Inoculation was made directly in the cups through the 
addition of 0.2% of a commercial inoculant (62.6% Si, 

0.22% Mg, 1.01% Al, 1.79% Ca, 5.96% Mn, 0.13% 
Ti, 6.77% Zr, 0.65% Ba and less than 0.07% lantha-
nides). The chemical analysis of the experimental 
irons is reported in Table 1. In addition to the elements 
listed in the table, the alloys contained 0.017% P, 
0.04% Cr, 0.01% Mo, 0.07% Cu and less than 0.01/% 
Al and 0.005% Sn. 
Table 1. Chemical composition (mass%) of cast irons 

heat CE C Si Mn Mg Ti S 
QI 4.38 3.78 1.93 0.22 0.038 0.030 0.009 
QII 4.20 3.56 2.03 0.19 0.039 0.021 0.011 
QIII 3.93 3.30 2.00 0.19 0.041 0.020 0.010 

 
Scanning electron microscopy (spectrums, map-

pings, line scan and different detectors) was carried 
out to analyze and quantify the possible nucleation 
sites at different solid fractions, as well as the influ-
ence of the inoculant in their formation. An example 
of the use of different detectors to identify nuclei is 
given in Fig. 1. 

Non-metallic inclusions of varying composition 
have been observed in the matrix and at the centers of 
graphite nodules of the different irons (Fig. 2). They 
include silicates, oxides, carbo-nitrides. The complex 
oxides include Mg, Ce, La (Fig. 2-d). Numerous Ce 
and lanthanides inclusions were found at the grain 
boundary without any contact with the graphite. 

Over 70% of the inclusions assumed to play a role 
in graphite nucleation were identified through X-ray 
composition maps and spectra as (Mg,Ca)S neigh-
boring TiC (Fig. 2-b). This tendency was confirmed in 
un-inoculated and inoculated irons, independent of 
iron melt chemistry and of solid fraction. Calcium 
appears in a great number of sulphides, but less fre-
quent than magnesium. Barium was never found in 
any nucleation site. A significant number of nuclei 
included Ti carbo-nitrides that contained Zr in many 
cases (Fig. 2-c). Most of the time the sulphides appear 
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