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Metal casting is a highly productive manufacturing 

methodology. A typical application for metal casting 

is the production of motor blocks, with a yield of up to 

25.000 units per day. There are various molding and 

casting methods, one such method is the gravitational 

casting. Gravitational casting can be either performed 

by a specialized casting machine or by an industrial 

robot with casting equipment attached, e.g. a ladle. In 

both cases programming the pouring motion is a 

tedious task usually performed via a teach-in process 

by an operator. In this paper we propose a general 

methodology to generate the casting motion via a 

process model. 
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Trajectory Generation.  

 

1. Introduction 

In the scientific literature control systems for 

pouring-robots and -mechanisms are intensely 

studied. Papers such as [1–4] contribute to solving 

sloshing suppression and prescribed flow rate 

assurance by redefining the closed loop control 

systems of the pouring-robot or -mechanism. This is a 

well suited approach, however it has the disadvantage 

that it is not easily implementable on currently used 

industrial robot controllers and industrial acceptance 

of any other control system than the classical cascaded 

torque-velocity-position faces difficulties.  

This paper presents an alternative solution to the 

prescribed flow rate assurance problem. Instead of 

addressing "how to assure the prescribed flow rate for 

a pouring process" this paper addresses "how to assure 

the prescribed flow rate for a pouring process with a 
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Figure 1: Reference flow rate and Cartesian curves 
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currently widely used industrial robot controller". The 

formulated question shows that a trade-off has been 

made with regard to performance in order to assure 

compatibility. The presented method does not perform 

better than dedicated control systems for sloshing 

suppression and prescribed flow assurance. However 

it makes existing robot controllers capable to suppress 

sloshing and assure flow rate.  

2. Model based trajectory generation 

To achieve this we have implemented the flow rate 

estimation equations of [2, 5] in a separate 

optimization module. This module computes the 

necessary motion to achieve the desired flow rate 

pattern. Figure 1 shows a sample pattern and the 

corresponding Cartesian motion to achieve the give 

flow rate and pour at a given position. 

The Cartesian curve obtained with the above 

presented module is in function of time and therefore, 

a robot executing such a task must have the option to 

accept time based reference values. Major robot 

manufacturers offer real-time communication 

interfaces though which a robot accepts reference 

values both in joint space and in Cartesian space from 

an external real-time reference values generator. The 

RSI interface from Kuka and the LLI interface from 

Stäubli can serve as examples for such interfaces 

Figure 2 presents the motions of the axis of a Kuka 

KR-500 industrial robot arm while executing the 

above presented pouring task. The values are obtained 

from simulation. Since the reference values only 

change the coordinates X, Y and Phi, the angles of 

axis A1, A4 and A6 remain unchanged thought the 

pouring process.  

3. Discussion and future works 

As Figure 2 shows, the proposed method is 

capable of transforming the reference motion, 

obtained from model equations in Figure 1, directly 

into inputs for the robot motion controller. The 

presented method is therefore highly useful for 

pouring applications utilizing standard robots. It is no 

longer necessary to program the pouring motion by 

teach in, the motion can be directly computed from the 

model equations. Because the robot continuously 

receives new set points, the method can also be used in 

a feedback manner. Feedback control will be 

investigated in future studies. 
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Figure 2: Robot axis movement 

 




