Further Correction of Measurement and Inference Errors in Piezoelectric Equivalent Inductance Components

圧電等価インダクタンスの測定誤差・推定誤差の更なる補正

Michio Ohki (Natl. Def. Acad.) 大木 道生(防大)

1. Introduction

In the equivalent circuit of piezoelectric transducer shown in **Fig. 1**, we have already shown the precise estimation method for $C/C_0 = \Sigma C_n/C_0$ and L_n . However, some "inference" process is required for this estimation. In this study, we improve this point by introducing a kind of feedback system, in which two feedback processes are repeated in an alternating manner.

2. Relationships between Lumped Parameters

In this section, some equations discussed in the previous studies $^{1-4)}$ are reviewed for later

Fig.1 Equivalent circuit: (a) When all modes are considered. (b) When resonance of nth mode is measured. The switch is shorted in the case of transverse (T-) effect, while it is open in longitudinal (L-) effect.

Fig. 2 Resonance pattern in the frequency domain as a pair of ω_n and Y_n . (a) Example of measured data. (b) Inference of pattern in the frequency domain by considering some periodicity in the domain.

discussion. In the frequency (ω -) domain, resonance frequencies and corresponding resonance intensities form a kind of "pattern" with some mathematical regularities, when the observation is performed from $\omega = 0$ to infinity ^{1,2}. However, we can usually observe only a finite number of lower resonance modes, as shown in Fig. 1(a), where ω_n is

$$\omega_n = \begin{cases} \omega_A & \text{for L - effect} \\ \omega_R & \text{for T - effect} \end{cases},$$

(for *n*th mode, where the subscript A and R stand for electrical antiresonance and resonance, respectively), and Y_n is related with L_n in Fig. 1 as

$$Y_n \propto \left(L_n\right)^{-1}.$$

In this study, we only set

$$Y_n = (L_n)^{-1}$$

for convenience. We also define

$$\hat{Y}_n \equiv \frac{Y_n}{\omega_n^2}, \quad \hat{Y} \equiv \sum_{l=1}^{\infty} \hat{Y}_l,$$

(the normalization factor is set unity for the purpose of this study), which equal to C_n and

$$C \equiv \sum_{l=1}^{\infty} C_l ,$$

respectively. The relationship between C'_0 and C_0 in Fig. 1 is given by

$$C_0' \equiv C_0 \mp g_n C,$$

which is the *definition* of g_n with mode dependence. (The upper sign for L-effect, and lower sign for T-effect.) From the measurement of the *n*th mode resonance,

$$r'_{n} \equiv \left(\Delta \omega_{n}^{2}\right) \times \frac{\hat{Y}}{Y_{n}} \approx \frac{C}{C'_{0}}, \quad (\Delta \omega_{n}^{2} \equiv \omega_{A}^{2} - \omega_{R}^{2})$$
$$u_{n} \equiv \left(\Delta \omega_{n}^{2}\right) \times C'_{0}L_{n} \approx 1,$$

are obtained.³⁾ g_n is estimated conventionally using

$$g_n \approx g_{n(\text{conv})} \equiv \left(\hat{Y} - \sum_{l=1}^n \hat{Y}_l\right) / \hat{Y},$$

and, in ref. 4, we adopt

$$g_n \approx g_{n(\text{corr})} \equiv g_{n(\text{corv})} + \sum_{l=1}^{n-1} \frac{1}{1 - (\omega_n / \omega_l)^2} \frac{Y_l}{\hat{Y}} + \sum_{l=n+1}^{\text{higher}} \frac{(\omega_n / \omega_l)^2}{1 - (\omega_n / \omega_l)^2} \frac{\hat{Y}_l}{\hat{Y}}$$

from which

$$r_n \equiv r'_n / (1 \pm g_n r'_n) \approx C / C_0$$

is estimated. r_n corresponds to the capacitance ratio, and therefore, should be invariant regardless of n, which can be utilized for reducing the errors in the measured values of Y_n or L_n^{-1} : Modifying Y_n for multiple modes (n=1,2,...) appropriately, $Y_n \rightarrow$ Y_n^* , can make the *variance* of r_n over the measured modes a minimum,

$$\operatorname{Var}[r_n] \equiv \operatorname{Mean}[(r_n - \overline{r}_n)^2] \to \min$$

under a constraint condition:

 $\hat{Y} = \text{constant}$.

This procedure provides more reliable values of Y_n ($\sim L_n^{-1}$) as well as r_n ($\sim C/C_0$).

2. Point of Argument in This Study

In the above method, the value of Y^{\wedge} must be estimated by inferring the values of ω_n and Y_n in higher modes with the help of the actually measured data on lower modes, as shown in **Fig. 2**. However, this inference process might include some errors due to the following reasons: (i) The periodicity in the frequency domain on ω_n and Y_n cannot be known in advance.

(ii) The measured data of Y_n in themselves might include some errors *before* the correction mentioned in Sec. 2, from which Y^{\wedge} is inferred.

Therefore, we introduce some feedback system in this study to reduce the errors in Y^{\wedge} . Note that

$$r'_{n}\left(\frac{1}{r_{n}} \mp g_{n}\right) = \Delta \omega_{n}^{2} \frac{\hat{Y}}{Y_{n}}\left(\frac{1}{r_{n}} \mp g_{n}(\hat{Y}, Y_{l})\right) \approx 1,$$

where g_n is regarded as a function of Y^{\wedge} and Y_l . With the help of this equation, we introduce

$$U_n \equiv \Delta \omega_n^2 \frac{\hat{Y}}{Y_n^*} \left(\frac{1}{\overline{r_n}} \mp g_n(\hat{Y}, Y_l^*) \right) \approx 1,$$

in which $Y_l = Y_l^*$ (l=1,2,...,n,...) are substituted, and U_n is regarded as a function of Y^{\wedge} and (the mean of) r_n . (However, the error in Y^{\wedge} influences the mean square error in $r_n^{(4)}$) By modifying Y^{\wedge} and Mean[r_n],

$$\operatorname{Var}[U_n] \equiv \operatorname{Mean}[(U_n - 1)^2] \rightarrow \min,$$

which can provide more reliable value of $Y^{\wedge} = Y^{\wedge *}$. Using the best estimates at this moment, the above-mentioned processes are repeated, the concept of which is depicted in **Fig. 3**. (Instead of the asterisk (*), the number of times of correction (*i*) is written as the superscript.)

Fig. 3 "Alternating" feedback system to correct Y_n (~ L_n^{-1}), r_n (~ C/C_0), and Y^{\wedge} (~ *C*). *i* is the number of times of the repetitive correction.

References

- 1. M. Ohki: Jpn. J. Appl. Phys. 44 (2005) 4509.
- 2. M. Ohki: Jpn. J. Appl. Phys. 46 (2007) 4679.
- 3. M. Ohki: Jpn. J. Appl. Phys. 47 (2008) 4029.
- 4. M. Ohki: Jpn. J. Appl. Phys. 48 (2009) 07GB10.