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1. Introduction 
This paper deals with a group delay method 

for evaluating thin layer material properties. We 
give theoretical discussions on the method and 
some experimental results to demonstrate its 
feasibility. 

In the field of mechanical engineering, thin 
layer materials are widely used to make machines 
light in weight and to improve in performance. 
Thus, evaluations of thin layers are practically 
important for inspection and maintenance. However, 
a conventional time domain reflection method using 
ultrasound pulse wave does not work well for a thin 
layer, because an echo from one side of the layer 
overlaps with one from the other side of the layer. 
In fact, the received echo has a damped oscillation 
wave form, because multiple reflections take place 
inside the thin layer and because the thin layer 
works as a transmission line resonator. 

In the group delay method, we obtain, from the 
spectrum of such a received echo, the group delay, 
which is a periodic function of frequency and 
becomes the maximum at resonance frequencies. 
We point out theoretically that the ratio of the thin 
layer thickness and the velocity of the layer is 
determined from the period and the impedance of 
the thin layer can be obtained from the maximum 
delay time. Experiments were carried out for a 
rubber thin layer. Then it is conclude that the group 
delay method is practically useful for evaluating 
thin layer material properties. 

2. Propagation of ultrasonic wave in thin layer 
Let us consider the pulse wave reflection by a 

thin layer in Fig. 1. We write the incident pulse 
wave u=u(t-x/v1) as 

�
�

��

��

�� dfefU
v
xtu v

xtif )(2

1

1)()(
�  ,  (1) 

and the reflected wave s=s(t+x/v1, h) in the medium 
1 as 
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Here, U (f) and S(f,h) are frequency spectra, which 
are determined from pulse wave forms u(t) and 
s(t,h) at x=0, respectively, by Fourier transform: 
------------------------------------------------------------ 
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Solving the boundary problem, let us obtain 
s(f,h). Assuming the medium 3 is air and putting 
Z3=0 approximately, we obtain  
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Here, k1 and k2 are wave numbers, and Z1 and Z2 are 
impedance in media 1 and 2, respectively (see Fig. 
1). These are all real numbers in a loss free case. Γ1
is the reflection coefficient by the interface at x=x1.
Γ1 is positive if Z2>Z1, and it becomes negative 
when Z1>Z2.
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Fig. 1 Pulse reflection by a thin layer (medium 2) with 
thickness h. vi, ρi, Zi are the velocity, density and acoustic 
impedance of medium i, (i=1,2,3), respectively. ki is the 
wave number of the medium i. In experiments, medium 1 
is acrylic, medium 2 is rubber, and medium 3 is air.

When the thin layer (medium 2) does not exist 
and h=0, we have form Eq. (5) 
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Next, we define the normalized spectrum by

)0,(/),( fShfS . We find from Eq. (5) and Eq. (9)
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which becomes a complex number with modulus 1 
and phase angle )( f�  when Γ1 is real. From Eq. 
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(10) we have 

�
�

�
�
�

�
��

��� �

12

21
2 )2cos(

)2sin(tan22)(
hk

hkhkf� .      (11) 

From this we have the group delay time τ(f)
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which is a periodic function of f.  The period fp is 
��/1h2/vf 2p �� . (13) 

Here, Δτ is the round trip propagation time of the 
thin layer. Note that fp and Δτ are independent of Z1
and Z2. The group delay τ(f) takes the maximum 
τmax or minimum τmin at a frequency f determined by 
cos(4πfh/v2)=±1. However, there are two cases. 

Case1: if Z2>Z1, then Γ1>0, and group delay 
time τ(f) becomes maximum when f is an integer 
times of fp:
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Case2:  if Z1>Z2, then Γ1<0, and group delay 
time τ(f) becomes maximum when f is an odd 
integer times of fp/2 
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If h is known, we may evaluate v2 by Eq. (13) 
as 
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Also, ρ2 can be estimated by Eq. (14) and Eq. (15) 
as 
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3. Result of an experiment and consideration 
In experiments, medium 1 was acrylic 

(v1=2700m/s, ρ1=1200kg/m3, Z1=3.24E10Ns/m3). A 
thin layer rubber with thickness h=1mm was used 
as a sample.  Using an electric excitation 
(f0=1MHz): 
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We measured echoes s(t,0) and s(t,h) for the rubber 
with h=1mm. Taking Fourier transform of the 
echoes, we obtained the group delay τ(f) in Fig. 2, 
in which the period is fp=0.74MHz and the 
maximum group delay is τmax=2.56μs. Since the 
group delay becomes maximum at a frequency f
equal to an odd integer times of fp/2, it holds that 
Z1>Z2.  Since h=1mm, v2 can be estimated as 
1480m/s by Eq. (16). Since τmax=2.56μs, ρ2 can be 
estimated as 1155.6 kg/m3 by the lower equation of 
(17). These results are summarized in Table I, 
where results by a general echo method for a thick 
sample with h=10mm are shown for comparison.

The difference between results by these methods is 
6.0% in acoustic velocity and is 5.7% in density. 
Experiments were carried out for other samples. 
Comparing with results by a general echo method 
for a thick sample, we found that the group delay 
method gives reasonable physical properties for a 
thin layer material.  
 Our discussions were restricted to the longitudinal 
wave case. However, we expect that the group 
delay method may be applicable for the transverse 
wave case. Moreover, the elasticity modulus E, the 
shearing rate G, and the Poisson ratio ν of the 
material could be estimated from VL the acoustic 
velocity and ρ density of the material, if we take the 
relations 2

LVE ��  and )1(2 ��� EG .

Fig. 2 Group delay τ(f) against frequency f.
rubber layer with h=1.0mm. 

Table I Comparison of physical property by experiment  

Material
Series. 

General echo 
measurement 

Group delay 
method 

Difference of 
two methods 

2v 2� 2v 2� 2v 2�

B4Si 1575 1226 1480 1156 6.0% 5.7%

4. Conclusion 
This paper proposed the group delay method 

for evaluating thin layer material properties. On the 
base of theoretical discussions for the longitudinal 
wave, we gave formulas for estimating the sound 
velocity and density of a thin layer material. 
Experiments were carried out for rubber thin layers 
and results were compared with ones by a general 
echo method for thick samples. Then, we conclude 
that the group delay method is feasible for 
estimating thin layer material properties. 
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