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1. Introduction 

The perfectly matched layer (PML) is one 
of popular absorbing boundary conditions for 
truncating the computational domain of open 
regions without reflection of oblique incident waves. 
In 1994, Berenger invented a PML for 
electromagnetic waves in the finite difference time 
domain (FD-TD) method by a spliting field 
method.1) Because fields in Berenger’s PML do not 
satisfy the Maxwell’s equations, two concepts have 
been  introduced for implementation in the finite 
element method (FEM) of electromagnetic wave 
problems: the analytic continuation or the complex 
coordinate stretching2,3) and anisotropic PMLs.4) 
Nowadays PMLs for electromagnetic waves are 
widely used in the FD-TD method and the FEM. 

Extension of PMLs to elastic waves in 
isotropic solids in the Cartesian coordinate first 
appeared in 1996.5,6)  In the cylindrical and 
spherical coordinates, PMLs� were presented by 
using spliting field method in isotropic solids in 
19997) and by using analytic continuation in 
anisotropic solids in 2002.8) Recently validity and 
usefulness of PMLs derived from the analytic 
continuation in piezoelectric materials � was 
demonstrated.9-11) 

Although the analytic continuation is 
powerful tool for derivation of PMLs in the 
frequency domain, two questions are left: why the 
particle displacements in the complex coordinate 
may be identical to those in the real coordinate?; 
why must we multiply the stress tensors by the 
Jacobian of the coordinate transformation?  

For replying to the questions, we derived 
PMLs for elastic waves in the Cartesian coordinates 
from the differential form on  manifolds and 
revealed that the components of stress tensors and 
the particle displacement vectors in the analytic 
continuation are not transformed to the real space.12)  

In this paper, we examine derivation of 
PMLs in the cylindrical and spherical coordinates 
from the differential form on manifolds. Our results 
show that the rule for determing PML parameters in 
the Cartesian coordinate holds in the cylindrical and 

 

spherical coordinates. 
 
2. Differential Form  

Particle displacements u� , density of 

momentums P
�

, stress tensors T and displacement 

gradient tensors F  are given as follows: 
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where ix�� / and ��� dxdxdx ,, are contravariant 
and covariant basis vectors, �  and �  represent 
the tensor product and the cross product, 
respectively. Newton’s equation of motion is 

tPTd ��� /
�

� where d is the exterior differential 
operator. Changing the coordinate gives relations of 
tensor components: for a tensor with tensor type of 
contravariant of rank 1 and covariant of rank q   
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Using the complex coordinate stretching2,3,8) given 

by � ��
ix

ii
i dssX ��� )(j)( IR  with the two real 

functions  )(R �is and )(I �is , we have the relations 
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Here, )(j )()( IR
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i xsxsxs ��  and j is the 
imaginary unit. 
 
3. PMLs in the Cylindrical and Spherical 
Coordinates 
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 In the complex coordinate stretching, we 
consider that the real coordinate ),,( 210 xxx  is 

),,( z��  and ),,( ��r for the cylindrical and the 
spherical coordinates, respectively. Assuming that 
the same constitutive equations in the real 
cylindrical and spherical coordinates exist in the 
complex coordinate, we have  

tuP cc ��� / ��
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Here, the superscript c denotes the value in the 
complex coordinate and the mass density �  and 
the stiffness ijklC  are the values corresponding to 
original material parameters of its PML in the 
cylindrical and spherical coordinates. Using eq. (6) 
to eqs.(1)-(4), we have 
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where )(ˆˆ i
i

ii
c xsxxs � . The quotient rule and eqs. 

(7)-(11) yield PML material constants: the mass 
density PML�  is 
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and the stiffness PML
ijklC  is 
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Eqs. (12) and (13) show that PML 
parameters for elastic waves in solids in the 
cylindrical and spherical coordinates may be 
calculated by the same procedure in the Cartesian 
coordinates. 
 

4.� Comparison with PML Material Constants 
Derived From Differential Forms and the 
Analytic Continuation 

By the analytic continuation, Zheng and 
Huang8) derived the mass density and stiffness of 
PML in the cylindrical and spherical coordinates: 
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mass density agree with our result, eq.(12), because 
multiplying the stress tensors by the Jacobian of the 
coordinate transformation, 210 sss , adjusts the mass 
density. We note that the form of eq.(12) is also 
derived from eq.(6) with the tensor type of mass 
density being covariant of rank 3, i.e. 3-form. The 
stiffness PMLA

ijklC  is different from eq.(13) because 
in the analytic continuation, the manipulation of the 
coordinate transformation corresponding to the part 
of stress tensor and the particle displacement vector, 
contravariant of rank 1, is excluded .  
 

5.� Conclusions 
PMLs in the cylindrical and spherical 

coordinates for elastic waves in solids were derived 
from differential forms on manifolds. Our results 
show that PML parameters for elastic waves in 
solids may be determined by the same procedure in 
the Cartesian coordinates. However this rule have 
been found out for PML material constants derived 
from the analytic continuation in the cylindrical and 
spherical coordinates by Zheng and Huang,8) our 
derivation based on differential form states that this 
rule may holds for PML parameters in any 
orthogonal coordinate system.  

Numerical examples for elastic waves in 
solids of FEM analyses in the frequency domain 
will be presented elsewhere. 
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