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1. Introduction

Superlattices (SLs) or phononic band-gap 
materials could be used for making high-quality 
phonon filters, phonon mirrors and vibration 
insulation devices in selective frequency range. In 
the periodic structures, the phononic band-gaps 
exist due to the Bragg reflections of the phonons 
with long wavelengths [1].

Ultrasonic band-gaps were experimentally 
observed in one-dimensional and two-dimensional 
composites for longitudinal waves [2, 3]. For 
example, James et al. studied the propagation of 
sound through a one-dimensional periodic array of 
water and perspex plates theoretically and 
experimentally [2]. The experimental result shows 
that the position and bandwidth can easily be 
engineered.

In above studies, the normal incidence case 
was considered. In this case, vibrational modes are 
decoupled from each other if the interfaces are a 
mirror-symmetry plane. That is, mode conversion 
does not occur. Only the longitudinal waves 
propagating through solid and liquid layers were 
considered. In other words, the liquid layers are 
used to realize the band-gap materials with broader 
gaps.

Recently, Hassouani et al. studied the sagittal 
acoustic waves in finite solid-liquid SL based on 
the Green’s function method [4]. In this paper, they 
suggested the existence of two types of frequency 
gap, i.e., Bragg-type gap and the transmission zeros
induced by the presence of the solid layers 
immersed in the liquid. However, they did not 
discuss the physical meaning of the transmission 
zeros.

In the present study, we theoretically 
examine the peculiar properties of phonons in 
solid-liquid SLs.

2. Model and Theoretical Method
1. The isotropic continuum approximation is used 
for solid layers of the SL. In this case, the phonon 

modes polarized in the sagittal plane are decoupled 
from the horizontally polarized shear mode. We 
consider the coupled L and T vibrations in the 
sagittal plane (i.e., sagittal modes).
2. The liquid layers are assumed to be ideal. That 
is, viscous shear stresses vanish in the liquid layer.
3. The normal stress Szz and the normal velocity vz
should be continuous at the interfaces between solid 
and liquid layers, but tangential velocity vx need not 
to be continuous at the interfaces.

4. Based on the transfer matrix method, we 
calculate numerically the dispersion relations of 
solid-liquid SLs with the infinite number of unit 
periods. Moreover, transmittance of phonons 
propagating through the finite solid-liquid SLs are 
calculated.

3. Numerical results and discussions
Figure 1 illustrates the phonon dispersion 

relations and transmittance calculated for a 
water/Plexiglas SL. In the phonon dispersion 
relations, the real part of the Bloch wave numbers 
(red lines) and their imaginary parts (blue lines) are 
shown as a function of the frequency. In the 
calculations of phonon transmittance, the SLs with 
the periods N=8 and 1 are assumed to be in water.
The results for incident angles 0� � � and 20�
are shown in Fig. 1(a) and 1(b), respectively.

The thicknesses of the solid and liquid layers 
are assumed to be the same. Parameters we used are 
������������� = 1.20 g/cm³, vt = 1.38 km/s, and v�
= 2.70 km/s for Plexiglas�� � = 1.00 g/cm³, v� =
1.49 km/s for water [4].

In the case of normal incidence, no transverse 
phonons can be excited. Thus, the characters of the 
dispersion relations are all longitudinal wave. The 
dispersion relations can be understood by folding 
the dispersion curves of a longitudinal mode into 
the mini-Brillouin zone determined by the period of 
the SL. At the zone center and boundaries, 
phononic band-gaps are generated. Thus, all gaps in 
Fig. 1(a) are Bragg-type gaps. In these gaps, the 
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imaginary part of the Bloch wave number is a 
continuous function of the frequency, as shown in 
Fig. 1(a).

In the case of oblique incidence, there is
another type of gap. Within this type of gap, there is 
a frequency at which the imaginary part of the wave 
number becomes infinity. We call this gap the 
resonance gap. Within the resonance gap,
transmittance of phonons becomes zero. Even in the 
case of N=1, transmittance becomes zero at the 
resonant frequency (see Fig. 1 (b)).

4. Phonons through a single solid layer in liquid

Even in the single layer case, there are 
resonant frequencies at which perfect resonant 
reflections occur.

In the ideal liquid layer, the transverse (T)
phonons cannot be excited. When longitudinal (L)
phonons are injected to an interface of liquid and 
solid layers at an angle from a liquid, only L 
phonons are reflected. As for transmitted phonons, 
on the other hand, both L and T phonons are 
involved in the solid layer. Then, the transmitted L 

and T phonons are scattered at the second interface, 
and each phonon are reflected as both L and T 
phonons but transmitted only as L phonons. As a 
result of the multiple reflections between two 
interfaces, perfect resonant reflections can occur, 
i.e., the amplitudes of the transmitted L phonons are 
cancelled out at resonant frequencies.

By analogy with the optics theory of the 
antireflection coating, we can derive a formula 
giving the resonant frequencies. The resonant 
frequencies are given by the solutions of 
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Here, � � � � ,  and ,z x z tz x tzk k k k� �k k� � are the wave 
vectors of L and T phonons in the solid layer. 

In the solid-liquid SLs, these resonant 
frequencies are gathered and generate a frequency 
gap (i.e., resonance gap), which is physically
different from the Bragg gap.

5. Conclusions
We examined the phonon propagation in a SL

consisting of alternate stacking of liquid and solid 
layers. There are two kinds of frequency gaps, i.e., 
the Bragg gap and the Resonance gap. The 
resonance gap is shown to be a phononic band-gap 
peculiar to the solid-liquid SL. The phonons in the 
resonance gap are multiple-reflected inside the solid 
layers with repeated mode conversions. These 
phonons are finally reflected as L phonons. This 
perfect reflection occurs even in the case of N=1. 
We derived the equation giving the resonant 
frequencies. In the periodic structure, these resonant 
frequencies are gathered and generate a resonance
gap.
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Fig. 1 The phonon dispersion relations and 
transmittance calculated for a water/Plexiglas SL. In the 
phonon dispersion relations, the real part of the Bloch 
wave numbers (red lines) and their imaginary parts (blue 
lines) are shown as a function of the frequency.
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