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1. Introduction 
The main disadvantage of static elastography 

is that its estimation of elasticity strongly depends 
on the applied stress distribution. An effective 
method of improving the nonuniformity of the 
stress applied by the shape of a transducer head is 
to insert a damper between the tissue being 
analyzed and the transducer head. We previously 
demonstrated the effectiveness of inserting a 
damper through computer simulations of structural 
and acoustic analyses1).

The present study aims to discover the 
appropriate conditions for two damper parameters, 
namely, thickness and the Young’s modulus on the 
tissue with a convex-shaped surface through the 
structural simulations based on finite element 
method (FEM). In this paper, the optimal thickness 
is investigated and discussed as the main parameter 
of the damper. 

2. Method 
Human tissue surfaces are curved surfaces 

with various curvatures. Konofagou et al. have 
proposed a displacement apodization method for 
reducing stress nonuniformity and represented the 
effects of apodization through structural analysis 
simulations with a flat-surfaced homogeneous 
tissue model2). According to this method, however, 
a transducer that is optimally designed for a certain 
tissue surface shape does not perform as an optimal 
compression board for tissue surfaces of other 
shapes. In this study, the transmit/receive face of the 
transducer head was assumed to be a plane, while 
the shape of the tissue surface was assumed to be 
convex.

2.1 Model 
As Fig. 1 shows, a three-dimensional convex-

shaped tissue model was designed for assessing the 
effectiveness of inserting a damper. The transducer 
face was a rectangular 1-cm long and 4-cm wide. 
The convex-shaped tissue consisted of a truncated 
sphere with a 10-cm radius and 3-cm height, thus 
7.1 cm width. The convex tissue had a Young’s 
modulus of 10 kPa and a Poisson’s ratio of 0.49 was 
commonly defined to the tissue and the damper. 
The transducer and the tissue had a common center 
axis, and compression was executed. The initial 
compression stroke along this center axis was 

defined as 2.15 mm, which is long enough for the 
entire transducer face to be in contact with the 
convex tissue surface. And the 1% compression, 
thus, 0.28 mm, was done. These compressions were 
regarded as the pre- and post-compressions, and the 
differential strain distributions for elastography 
were calculated. As in the case of the flat-surfaced 
tissue, the damper was assumed to be securely 
bonded to the tissue surface. The FEM models were 
built using quater models by assuming axial 
symmetry, and the tissue was assumed to be 
attached to a rigid tissue (bone) on the y=0 
boundary. Therefore, the symmetrical boundary 
conditions Ux=0 and Uz=0 can be applied to the 
axes of symmetry of the model, i.e., x=0, and the 
zero displacement constraints of Ux=0 and Uy=0 
were defined as located at the bottom boundary, i.e., 
y=0. The other boundaries had no constraints. 

2.2 Parameter
The simulations were executed with a 

compression stroke of 0.3 mm (1% of the tissue 
thickness) with and without a damper. To assess the 
effects of damper thickness on convex tissue, the 
dampers were given a fixed Young’s modulus of 10 
kPa and various thicknesses, namely, 1, 2, 3, 5, and 
10 mm. The flatness, a dimensionless number, is the 
ratio of the axial edge (x=2 cm) strain e to the 
center (x=0 cm) strain c at the same depth, i.e., 

,                      (1) 

Thus, a flatness value of 1 is considered ideal. 

3. Results and Discussions 
Figures 2(a) and (b) show the two-dimensional 

contour mappings and the axial strain plots in the 
case of without damper. The following two features, 
which had not been observed in the case of the flat 
tissue, were found in the results: (1) two minimal 
peaks in the center strain distributions, (2) plus 
values of the strain at the shallow depths. 

The difference strains between the pre- and 
post-compression strains and the flatness calculated 
from the center and edge strains are shown in Fig. 2 
(c) and (d), respectively. In these figures, 
meandering parts were drawn, reflecting the 
complex strain distributions inside the compressed 
tissue.  

The difference strain distributions obtained  
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(a) Top view.            (b) Side view. 

Fig. 1  Simulation model of convex tissue  
(quarter model).  

Fig. 2  Results of strain and flatness distributions  
in convex tissue (without damper).  

with the various thicknesses of dampers were 
separately shown in Fig. 3 (left side). Because both 
of the damper and the tissue were given the same 
Young’s modulus in these simulations, the effects 
that the tissue was thickened for the each damper 
thickness were expected. As the result, the 
difference strain curves drawn in Fig. 3 were 
similar to the one which the curve drawn in Fig. 2 
(c) was truncated on the shallow region. The sign 
inversions of the center strain could be found in Fig. 
3 (b), (c) and (d), therefore the flatness curves in the 
case of the convex tissue drawn in Fig. 3 were 
further form the ideal value than the those in the 
case of the flat tissue. The very small values of the 
strain were locally generated among these complex 
strain distributions, and an extremely large absolute 
strain in Fig. 3 (c) was obtained, because the index 
of the flatness was simply defined as the ratio of the  

Fig.3 Results of difference strain (left) and flatness  
(right) distributions in convex tissue (with  
damper).  

edge strain to the center strain. Consequently, a 
certain trend could not be observed among the 
flatness curves in Fig. 3, unlikely to the 
corresponded strain curves with the certain trend of 
“truncated”. 

In the case of the convex tissue, as the same as  
the case of the flat tissue, it was also demonstrated 
that the thicker the damper, the higher the strain 
dispersion effect. The lower the flatness value, the 
more difficult it is to conduct an appropriate 
elastogram. Thus, it was suggested that direct 
observations of the flatness and its components, 
namely, the center and edge strain, were important 
to assess the damper effect on the tissue with a 
non-flat surface. 
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