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1. Introduction 

It is well known that elastic constants Cij

plays an important role in materials science and 
condensed matter physics.   Up to date, several 
methods have been proposed to determine the Cij

tensor from experiment such as tensile test, 
ultrasound pulse-echo method, nano-indentation 
method, etc.  To the best of the authors knowledge, 
resonant ultrasound spectroscopy (RUS)1,2 is the 
state of the art technique because (i) it determines a 
complete set of Cij tensor from one single crystal 
sample and (ii) measurement accuracy is 
sufficiently high; generally, inaccuray is less than 
1 %.  Because of these reasons that the RUS 
method has been applied to various kinds of 
materials.  In the theory of RUS, however, there 
exists an mathematical issue that should be 
addressed.  Since the pioneering work by Ritz, 
resonant state has been characterised by a stationary 
condition of the action integral I and which is 
solved numerically by a direct method.  Here, I is 
defined as a functional of deformation function ui.
It is therefore easy to handle a fixed boundary 
condition (or Dirichlet type boundary condition).  
However, free vibration requires stress-free 
boundary condition (or natural boundary condition) 
and this condition is satisfied if only if the order of 
basis function becomes infinity.  In order to avoid 
the mathematical difficulty, in the present study, we 
propose a new theory for free vibration acoustic 
resonance of two-dimensional elastic sheet.  Our 
theory uses Airy stress function and satisfies the 
natural boundary condition explicitly under finite 
number of basis function. 

2. Free Vibration Acoustic Resonance 
2-1. The theory of RUS 

Let us consider a three-dimensional elastic 
body defined by Ω = {��| − �� < �� < ��, � =
1,2,3}  and let ui, ui,j and ui,t be deformation 

function, spatial derivative of ui and time derivative 
of ui in �.  Then, the action integral I can be 
expressed by the following form. 
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Here ℒ is called the Lagrangian density.  Since 
resonance condition is characterized by �I = 0, we 
have the following Euler-Lagrange equation and 
natural boundary conditions. 
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Eq. (2) is linear wave equation defined in �.  The 
first two identities in Eq. (3) require that the 
deformation function ui must be periodic with 
respect to time.  The third condition concerns on 
the stress-free boundary condition which is 
mentioned in the previous section.  Generally, 
there is no analytic solution for Eqs. (2) and (3) if �
has a rectangular parallelepiped shape.  Thus, we 
solve the stationary condition �I = 0 numerically by 
a direct method.  However, since the action 
integral I is defined as a functional of deformation 
ui, we cannot impose the stress-free boundary 
condition directly to the basis function.  Hence, 
strictly speaking, the boundary condition cannot be 
satisfied if the order of basis function is finite. 

2-2. The theory of RUS 

In order to avoid the mathematical difficulty 
described above, we formulate free vibration 
acoustic resonance of a solid by using Airy stress 
function rather than deformation ui.  To simplify 
the analysis, for the first approximation, we employ 
a two-dimensional isotropic elastic sheet model: 
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Ω = {�, �|−�� < � < ��,−�� < � < ��}.   Let �
be Airy stress function defined in �.  Then, the 
strain energy of � becomes the functional of � such 
that 

�[�] = � (���
� + ���� + 2����

4��

− ����� + �����
4�(3� + 2�) )��.

(4) 

Here � and � are Lame constants.  In order to 
avoid the trivial solution, we impose the following 
subsidiary condition 

||�||�� = � |�|��� = �����.
�

(5) 

Let us express the Lagrange undetermined 
multiplier by �.  Then, from Eqs. (4) and (5), we 
obtain the following functional. 

�[�] = � (���
� + ���� + 2����

4��

− ����� + �����
4�(3� + 2�) − �|�|�) dV.

(6) 

The stationary condition �J = 0 yields minimization 
of energy functional Eq. (4) under the constraint 
condition of Eq. (5).  To solve the variational 
problem, we expand the Airy stress function in such 
a way that  

� = (�� − ���)�(�� − ���)� � �(��,�����)
�

���

�

���
. (7) 

Note that this stress function satisfies the stress-free 
boundary condition irrespective to the coefficients 
�m,n.  Inserting Eq. (7) into Eq. (6), it ends up with 
a linear eigenvalue problem: � and �m,n are 
determined as eigenvalue and eigenvector, 
respectively.  For numerical analysis, we set L1 = 
0.9, L2 = 1.3 and � = 3� = 1.  The order of basis 
function is set to be M = N = 5: the degree of 
freedom is � = (M+1)(N+1) = 36.  This means that 
we obtain 36 types of stress function � and 
Lagrange undetermined multiplier �.

3. Results and Discussion 
Figure 1 shows two-dimensional stress 

distribution in � calculated from the first three 
vibration modes.  As seen from the figures, �11
and �12 vanish at x = L1 and -L1.  Similarly, �22

and �12 vanish at y = L2 and –L2 as required.  It 
should be noted here that the stress distributions 
plotted in Fig. 1 satisfy the equilibrium equation �ij,j
= 0 since they are derived from the Airy stress 
function.  In addition, if we set ||�||L2 = 1, then the 
36 types of stress functions are orthogonal in a 
sense that 

〈��, ��〉 = � ������
�

= ���. (8) 

Furthermore, the eigenvalue � obtained from the 
method showed linear relationship with those 
obtained from the previous method.  These results 
strongly suggest that the present theory provides an 
appropriate way for describing free vibration 
acoustic resonance of two-dimensional elastic 
sheet. 

Figure 1.  Stress distributions obtained from the 
first three resonant vibration modes; (a) � = 
39.2673, (b) � = 98.6992 and (c) � = 230.018. 

4. Conclusions 

This study presents new theory for acoustic 
resonance of two-dimensional elastic sheet.  Our 
formulation is based on Airy stress function � and 
the calculus of variation.  Numerical analysis 
revealed that the stress function � satisfies 
stress-free boundary condition and equilibrium 
equation simultaneously.  It is also found that the 
eigenvalue � showed linear relationship with those 
obtained from the previous method. 
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