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1. Introduction

For modeling propagation of elastic waves in
anisotropic solids by finite-difference time-domain
(FD-TD) method, we presented a staggered grid
with the collocated grid points of velocities
(SGCV)". To impose boundary conditions on the
FD-TD model simply, the new grid was derived
from a single control volume of the momentum
conservation law and line integrations of the
displacement gradient. Abandoning the cross-shape
arrangement of the velocity vector results in
interpolations of the velocity components away
from grid points. In an isotropic solid in two
dimensions, numerical dispersion relations of
vertically polarized shear waves (SV-waves) and
longitudinal waves (P-waves) modeled by (2,2) and
(2,4) schemes have been derived and investigated
numerically."”

Because the previous paper” focused on the
derivation of the SGCV, we reported one numerical
example of the numerical dispersion in the isotropic
solid with a Poisson ratio of 0.3 for a FD-TD model
with a Courant number R=V,4/40f0.5 and a
normalized spatial interval A/4, of 0.1 where V,, 4,
Aand A, are the phase velocity of the P-wave
propagating in the solid, the time and the spatial
intervals, and the wavelength of the SV-wave used
in the analysis. We concluded that the interpolation
with 3rd degree bi-polynomials gives comparable
results of conventional staggered grids.>” Recalling
that the numerical dispersion relations of the SGCV
depend on the Poisson ratio but those of the
conventional staggered grids do not, we should
investigate the numerical dispersions for other
Poisson ratios.

In this paper, we will present computed
results of numerical dispersions of SV- and P-waves
propagating in infinite isotropic solids with the
Poisson ratio in the range of 0.1 to 0.495 by the
FD-TD models with the (2,2) and (2,4) schemes in
two dimensions. These results will show the
usefullness of the SGCV models with the Poisson
ratio in the range of 0.1 to 0.45.

2. FD-TD Models with the SGCV in Two
Dimensions
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Fig.1 A unit cell of staggered grid with collocated grid
points of velocities in two dimensions for P- and
SV-waves propagation.

In an isotropic solid in two dimensions,
the wuniform SGCV for P- and SV-waves
propagation reduces to a grid shown in Fig. 1. Here,
[ and ] are integers for a grid point with the position
vector p = (IX +]9)A where X, § are the unit
vectors in the directions of x- and y-axis, and v;
and Tj; (ij = x, y) are the i-component of a particle
velocity and the jj-component of a stress tensor,
respectively.

Newton's equation of motion and
relations of displacement gradient tensors [;; and
velocity vectors are modeled as follows:

ng,t [vi]:Dg,x [Ti] + D;[)',y [Tiy] fori=x,y, (1)
ar;/ 6t|§+4t/ f=D ] forijexy. ()

Here, p is the mass density, ¢ is time, and Dg,i[f ]
is a finite difference approximation of the spatial (i
= x, y) or time (i = ¢) derivative of a scalar function
Ar,f) with respect to i on the grid point p (@ for eq.
(1), O and O for eq. (2) ) where T = KA; with
an integer K. Using the derivative of the stress and
strain relation with respect to time and eq. (2), we
obtain following relation:

DT+At/2 [Tij] — Zk,l (Aé‘ij&d + /.l5ik5jz +

pt
T+5
18,851 D, * [vil. 3

Here A and y are the Lamé constants, and o is the
Kronecker delta.

Velocity  gradients prtad 2[vk] and

Py

pItae/2 [vk] for k = x, y on the grid points of the

p.x
stress components 7, and 7j, respectively, are
required for the time update eq. (3). We used

interpolations of velocity vectors on the four



corners by a tensor product of two polynomial .

interpolations on adjoining grids” with the
(Dx X Dy,) values on the D, and D,, grids in the x-
and y-directions, respectively, as follows:

_ Dy—1
v (6, y) = S5t 8 Clxly™ (4

3. Numerical Dispersion Relations of Plane SV- £ ros

and P-waves in an Isotropic Solid

We consider monochromatic elastic plane
waves propagating in an infinite solid with wave
vector k on the x-y plane and the angular frequency
. Assuming the dependence of particle velocities
on discretized time and spatial grid points as exp
j(wKA4:-kp) and deriving wave equations from egs.
(1) and (3), we obtain the dispersion relation:

20 Aty p2oq 1 <2 4 c2
sin?(w5) = R2 (1 - —)[(S+57) +

1 — 2 —_
— [(S7+53) 45285701 - ). (5)
where R = Vp%, o is the Poisson ratio, :S': =

sin(k'2) (1 = x y) for (22) scheme and

S, = sin (k %) [1+ w] for (2,4) scheme,

the sign + and — are for the P- and SV-waves in the
double sign =, and Cp is 1, (1— SH(1-

s, 1-sHA-sHa+SHra+dr | a-,

SHA-HA+Z+321 1 91 52 for he
conventional staggered grids™ and the SGCV with
D.,=D,=1, 3,5, respectively.

4. Computed Results of Numerical Dispersions

Figure 2 shows the computed results for
the numerical dispersions with o= 0.495,

AA= 0.1 and R = 0.5, where A, = 2nV/wand V; =

Ju/p. Here, Vy, and V), are the values of P- and
SV-wave velocities given by eq. (5) and the
propagation angle of plane waves € is defined as
0 = cos (k- 2/|k|). The values Vy, and Vy,ofthe
SGCVs are the same as those of conventional grids
for 8= 0, ©/2 and the maximum difference between
the values appeare for &= n/4. These results have
been confirmed with o= 0.3."” In the following
results, we will show the absolute value of the
difference between computed results of the
staggered grid with = m/4 and €= 0 for the
maximum numerical dispersion on the grid.

Figure 3 shows the maximum difference
of computed numerical dispersions as a function of
oin the range of 0.1 to 0.495. Interpolation with D,
= D, =5 for the SGCVs except SV-waves in solids

alized phase velocity Vi,

= Conventional grid —omx(2,2)scheme | = . —onx(2,2)scheme
10.0505 g —oox(2,4)scheme =lst Conventional grid —onx(2,4)scheme
= 000
10,05 °ao° 005° ES 009°%%%0
- ° ° Zl4 °
o ° ° o 5 ° o o °
10.0495 oy 00 s o o
©06000° > ° )
10.049} ° 212 0 )
g
2 e e
100485 0°%000 0000°°° Sl g )
©000000000° b=l
1004 2 ledgggppeeensaganieegegeg., 8,
00 New grid with 15t degree polynomial interpolations | 'S |50 New gid with 15t degree polynomial interpolations
oo New grid with 3th degree polynomial interpolations g 0.9facNew grid with 3rd degree polynomial interpolations
xxNew grid with 5t degree polynomial interpolations | 2 XNy grid with 5t degree polynomial interpolations
10.04 T 80 9 0% 70 _20 30 40 30 60 70 80 90

Maximum difference of VNp V

>

’ P-étv)av93gr<>1f14%;)zzzitig;1 mfé’w[d@g] SV-wave propagation angle[deg]
(a) P-waves (b) SV-waves
Fig.2 Numerical dispersions of (a) P- and (b) SV-waves
propagation in an infinite isotropic solid with o= 0.495,

2 -01andy =05

s A

E
B

0

00New grid with 15€ degree polynomial interpolations
oNew grid with 319 degree polynomial interpolations ¢
xxNew grid with sth degree polynomial inlelpolaliouég
| eeeessgg
000003333388885

500000000999353
£0000000866560000
4

00 New grid with 15t degree polynomial interpolations
a0 New grid with 31 degree polynomial interpolations
2 %X New grid with 5! degree polynomial interpolations

=)

220,

90
"“"?\0-

5000000000,
000"000 N
o

o

o0
Egauuuﬂuu g
o

0000,
000,
0o

=)

o

o
o

ooo®

x

Boooog
“““““nnnnn
Sop,
o
og, X

ooo!
opod
—‘nnnnnnnnnnnnnnnnnnnnnn

=)

$3

Maximum dfference of Vg Vg

169 —Conventional grid

—onx(2,2)scheme % — T —oox(2,2)scheme
| —oex@a)scheme @ | TConventonal grid —oax(2, 4)scheme
10077005 027 025 03 035 04 045 05 1007 015 02 025 03 035 04 045 05

Poisson ratio & Poisson ratio &
(a) P-waves (b) SV-waves
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Fig.4 Maximum numerical dispersions of (a) P- and (b)
SV-waves propagation in an infinite isotropic solid as

functions of N = A/Awith o =0.3 and V, & — 05,

A
with the Poisson ratio over 0.45 by (2,4) scheme
reduces the numerical dispersions to the levels of
the conventional grids.

Figure 4 shows the maximum difference
of computed numerical dispersions as a function of
N= A/Awith 0= 0.3 and R = 0.5. With increasing
N, numerical dispersions of the P- and SV-waves
decrease.

We conclude that the SGCV models of the
SV-waves propagation in the solids with a large
Poisson ratio such as 0.49 must be divided in finer
grids than the conventional staggered grids.
However, the SGCV models of P-waves require
coarse grids comparable to the conventional grids.
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