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1. Introduction 

It is well known that elastic constants  
plays an important role in materials science and 
condensed matter physics.  To the best of the 
authors knowledge, resonant ultrasound 
spectroscopy (RUS)1,2 is the state of the art 
technique because (i) it determines a complete set 
of  tensor from one single crystal sample and 
(ii) measurement accuracy is sufficiently high.  
Because of these reasons that the RUS method has 
been applied to various kinds of materials.  
However, since the theory of RUS is written within 
a framework of the linear elasticity, it cannot be 
applied to a measurement of higher-order elastic 
constants.  In order to determine not only the 
second elastic constants but also those of 
higher-orders from resonant frequency of an elastic 
medium, we must extend the theory into a general 
framework of nonlinear elasticity.  In this study, 
we developed a theory that describes free-vibration 
acoustic resonance of two-dimensional nonlinear 
hyperelastic medium. 
 
2. Theory 

2.1. Variational Formulation 
Let us consider a St.Venant-Kirchhoff type 

hyperelastic medium defined by 
.  Let  be 

displacement functions defined in .  Then, the 
action integral I of the elastic medium is defined by 
the following form. 

 (1) 

Here  is a resonant frequency and  is the 
Lagrangian density.  Since the domain  is 
consisted of the St.Venant-Kirchhoff hyperelastic 
medium, the Lagrangian density can be expressed 
by the following form. 

 (2) 

Where  is displacement velocity (material time 
derivative of ),  is Green-Lagrange strain 
tensor, and  and  are Lame constants, 
respectively.  Since the elastic medium  is 
holonomic and free from any dissipation, the 
principle of stationary action must hold.  In other 
words, a resonant state can be understood as a 
stationary point .  This is a variational 
problem defined on a variable domain with respect 
to time t. 
 
2.2. Numerical analysis by Ritz method 

The variational problem has been solved 
numerically by the Ritz method.  First, we expand 
the deformation function by complex Fourier series 
in such a way that 

 (3) 

Here  consists of the four 
types of the basis functions: 

, 
(5) 

 

where 
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Inserting Eqs. (2) and (3) into Eq. (1), we obtained 
analytic form of the action integral.  Here, we 
introduce the  norm of the displacement at t = 0: 

 (3) 

Then, the variational problem can be understood as 
the minimization of strain energy under the 
constraint condition of  = const.  This 
problem ends up with a nonlinear simultaneous 
equation and is solved numerically through a 
convergence calculation by the Newton method.  
Note that we set ,  and 

.  The order of the basis function is set 
to be : the degree of freedom is 

. 
 
3. Results and Discussion 

3.1. Amplitude dependence of resonance frequency 
Figure 1 shows amplitude dependence of 

resonance frequency  obtained from the first 
resonant vibration mode.  As seen from the figure, 

 decreases monotonically with increasing in 
amplitude.  This is due to the nonlinearity of the 
medium.  At the low amplitude limit, , 
resonance frequency  converges to the linear case 
solution, as it should be.  Similar features have 
been confirmed in other resonant vibration modes 
and these result consistent with the previous study 
for an one-dimensional nonlinear elastic bar 
model3. 
 

 
Figure 1.  Amplitude dependence of resonance 
frequency obtained from the 1st resonant vibration 
mode. 

 

3.2. Vibration patterns 
Figure 2 shows resonant vibration patterns 

obtained from the first three resonant vibration 

modes at  (top) and  (bottom).  
These patterns are similar to those of linear system.  
However, careful investigation revealed that (i) 
these vibration patterns include high wave number 
as well as high frequency modes, (ii) there exists no 
specific time at which all displacement vanish in , 
and (iii) the vibration patterns can be classified into 
four vibration group.  

 

 

Figure 2. Resonant vibration patterns obtained from 
the first three resonant vibration modes. 

 

4. Conclusions 

Free vibration acoustic resonance of a 
two-dimensional St.Venant-Kirchhoff hyperelastic 
medium has been investigated using the theory of 
nonlinear elasticity and a direct analysis in the 
calculus of variation.  Present study revealed the 
following properties of the elastic medium: 
1. Resonance frequency  of the hyperelastic 

medium shows marked amplitude dependence. 
2. Both high frequency and high wavenumber 

modes are excited due to the nonlinearity of the 
medium. 
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