2P2-5

Proceedings of Symposium on Ultrasonic Electronics, Vol. 33 (2012) pp. 177-178

13-15 November, 2012

Analysis of guided wave which propagates pipe or pipe
with fluid with attenuation
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1. Introduction

Cylindrical pipes are widely used in indus-
tries such as nuclear power plants and micro total
analysis systems (WTAS). Nondestructive evalua-
tion (NDE) of such pipes is therefore crucial.
NDE as well as ultrasonic flowmeters can be used
to characterize pipes filled with fluid. Guide wave
of a hollow pipe was investigated theoretically by
Gazis', and we previously expanded on the theory
proposed by Gazis for a fluid-filled pipe*’. Those
studies were for the condition that attenuations of
the pipe and the fluid are negligibly small.
However, the attenuations can not be neglected in
some condition such as a inspection of a spallation
neutron source mercury target, and a nondestructive
inspection of an erosion of the mercury container
walls* is required. Threfore, we analyzed the
guided wave which propagates pipe with
attenuation.

2. Theoretical analysis

Fig. 1 shows the theoretical model of a
cylindrical pipe and its coordinate system
(cylindrical coordinates). The author's theoretical
basis is an expansion of that of hollow pipe by
Gazis'. The displacement u* of the pipe
(a<r<b) and the displacement u™‘ of a fluid
(0<r<a) are represented by a vector (H) and
scalar potential (@, , @,) as follows.

' =Vg +VxH (1)
uﬂuid :v¢f

Fig. 1 Theoretical model

Wave equations of the potentials are as follows.
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Here, ¢ idicates time, v,, v, and Vv, represent
sound velocities of longitudinal wave of pipe,
taransversal wave of pipe and logitudinal wave of
fluid, respectively. The potentials are as follows.

¢. = f.(r)cosnBexpi(k*z—awt)
H. =g (r)sinnfexpi(k*z—wt+7/2)
H,=g,(r)sinnfexpi(k*z—wt+7/2)
H_=g,(r)sinnfexpi(k*z—ot)
¢, = f,(r)cosnBexpi(k, *z—wt)  (3)
k*=k(l+in), k*=k,(1+in,)
k=2, v=2
V—v k
k, o, n, i , n, n, and v represente the
wave number of the guided wave propagating in a
pipe, the angular frequency, the circumferential
mode parameter, the imaginary unit and an
attenuation constant of the pipe, an attenuation
constant of the fluid and a flow velocity of the fluid,
respectively. By eq.(2) and (3), below equations
are obtained.
ﬂ = AsZn (alr) + BsWn (alr)
g =4Z,(Br)+BW,(Br)
2g,=(g,~ &)
=24Z,,(Br)+2BW,.(Br) D
2g,=(8, + &)
=24,Z, ,(Bir)+2B,W, (Br)
ff = Aon(}ﬁr)
a’l=w’ v —k*
ﬂzza)z/vf—k*2 (5)
=0 v —k,*
J,, Y, I, , K, arethe Bessel function of the
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first kind, the Bessel function of the second kind,
the modified Bessel function of the first kind and
the modified Bessel function of the second kind,
respectively. Z,, W , «,, B and y, are
show in Table 1-3. Each argument of the Bessel
functions become a complex number when 77 or
7, 1is not zero. By the property of the gauge
invariance, any one of the three potentials g,
(i =1, 2, or 3) can be set to zero. Setting g, =0
yields

g ="8=8 (6)
By eq.(1), (3) and (6), the displacements are as
follows.

u™ =[f+(nlrg, —k*g]
xcosnf@expi(k*z—wt)

uy™ =[~(n/r)f, —k*g - g}
xsinn@expi(k*z—wt)

ul =[k* f,— gl = (n+1)(g /)] @
xcosné
xexpi(k*z—wt+7/2)
u," = f1 cosnfexpi(k, * z—ar)
The boundary conditions are as follows.
u:ond _ u;luid , ol = id
O'jglid = O'rszolid =0 at r=a (8)

O_j:)lid :O_jzlid :O-j:"d :0 at I”=b
™'’ and o™ are the stress tensors of the
pipe and fluid, respectively. They are
obtained by displacements and solid’s and
fluid’s densities (p, and p,). By eq. (7)
and (8), a homogeneous systems of linear
equations is obtained.

[c,]x=0

tX: (AS)AUA},BS)BUB}aAf)

[c,;] is a 7x7 matrix, and ¢, are similar to our
previous result except for £ and k,. All k
and kf of ¢, in refs. 2 and 3 are replaced by
k* and k,*, respectively. For example, some
¢; s are shown below.

c,=k*aZ, (Ba)

¢y =[-nZ,(na)+ nA,az,,,(xa)) (10)
xexpi(k, *z—wt)/expi(k*z — or)

¢y =[2n(n=1)~(B* —=k**)a’1Z (aa)
+2A4a,aZ,, (a,a)

ey =lp,0’dZ,(na)(pv))]

xexpi(k, *z—at)/expi(k™*z— ot)

©)

A nontrivial solution is obtaiend when the

determinant of [c;] is zero.
det[c;]=0 (11)

Because eq (11) containes the frequency
(f=w/2r) and the phase velocity (V' ), the
dispersion curves are obtained.

Table 1 Parameters for o

a, A, Z (ayr) | W, (ayr)
Re(a’)>0 | & 1 J,(er) | Y, (ar)
Re(a®)<0 | /i | =1 | I () | K, (1)
Table 2 Parameters for [
B | A | Z,(Br) | W.(Br)
Re(f)>0 | B |1 | J(Br) | Y, (Br)
Re(f*)<0 | Bli | =1 | L(Br) | K,(Br)

Table 3 Parameters for y

X A, | Z,(r)
Re(y*)>0 | £ 1 J, ()
Re(y*)<0 | x/i | =1 | L(xr)

3. Discussions and Conclusions

We obtained anyalitical result of the guided wave
which propagates pipe or pipe with fluid with
attenuation. ~As a sample, the determinant of [c; ]
is plotted in Fig. 2. We can see two V' s in Fig. 2.
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Fig. 2 Determinant of [c; ]
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