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1. Introduction 
The staggered grid with the collocated grid 

point of velocities (SGCV) was presented for the 
finite-difference time-domain (FD-TD) method to 
model propagation of elastic waves in anisotropic 
solids1). Since the SGCV is derived from a single 
control volume of the momentum conservation low 
and line integration of the displacement gradient, 
boundary conditions are simply imposed on the 
FD-TD method. 

To demonstrate the simply imposed boundary 
conditions on free surfaces, a FD-TD model with 
SGCV was applied to resonance frequency analysis 
of a Lamé mode resonator on an isotropic solid, 
which have free surfaces between vacuum and the 
solid, and the results showed good agreement with 
the theoretical values2). Although the interpolations 
of the velocity components are required to evaluate 
the velocity gradients near the free surfaces, stress 
components on the surfaces are simply set to zero to 
impose the free-surface boundary condition with 
the SGCV. 

To compare with the SGCV, we think that 
FD-TD models with the conventional staggered 
grids (SGs) 3,4) use more complicated procedures for 
the free-surface boundary condition with the 
stress-imaging technique4,5), the vacuum 
formalism6), or the adjusted staggered scheme7).
However, we have not discussed accuracy of results 
computed by SGCVs and SGs.  

In this paper, resonance frequency of a Lamé 
mode resonator is analysed with a FD-TD method 
that uses a scheme of second-order accuracy in the 
time and spatial differences [(2,2) scheme]. Two 
types of grids are used, and results are compared: 
the one is the SGCV, and the other is a conventional 
SG. In the former bi-linear interpolation is used to 
evaluate the particle velocity on corners of unit cells, 
and four adjoining grids are used for interpolation 
to evaluate the gradients of particle velocity on 
grids just inside the free-surface boundaries2). We 
have found that the accuracy of the resonance 
frequency with the SGCV is comparable to the one  
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with the conventional SG with the stress-imaging 
technique, and that the boundary conditions can be 
more simply imposed on the FD-TD method with 
SGCV. 

2. FD-TD models of a Lamé Mode Resonator 
We consider a two-dimensional square Lamé 

mode resonator with a side length of L on an 
isotropic solid with Poisson’s ratio 0.252). When the 
wavelength of the SV-wave at the frequency  is 
2L, the fundamental resonance frequency of the 
Lamé mode resonator, , is . In this paper, 

 and , where , ,
 and  are, respectively, the Courant number, 

the phase velocity of the P-wave in the solid, the 
time interval and the grid size. 

Figs. 1 and 2 show the Lamé mode resonators 
discretized with the SGCV and conventional SGs, 
respectively. In the former no grid out of the 
resonator is required because the free-surface 
boundary condition can be directly imposed as 

 (  for  on the surfaces. In the 
latter grids out of the resonator are required for the 
stress-imaging technique. Here, the U and V 
formulations and H and V formulations5) are 
applied to the free surfaces as shown in Figs. 2 (a) 
and 2 (b), respectively. 

3. Numerical Results  
To analyze the resonance frequency of the 

Lamé mode resonator, the vibration and observation 
points are (L/4, L/4) and (-L/4, -L/4), respectively, 
on the x-y plane with the origin on the center of the 
resonator. The vibration of the x-component of the 
particle velocity is expressed as a sine-modulated 
Gaussian pulse with the center frequency . The 
number of total time steps, N, is taken as 

2).
After the FD-TD calculation, the discrete 

Fourier transform is applied to the time response at 
the observation point in the interval from  to 

, where Ns and Ne are the numbers of time 
steps corresponding to the start and end sampling 
times, respectively, to extract the resonance 
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frequency of the resonator. Here, 
 and . The time 

response of the particle velocity at the observation 
point is shown in Fig. 3.

Table I shows the extracted resonance 
frequencies of the resonator. We can see that the 
results converge into the theoretical value [1 MHz] 
as  increases, and that the errors of the results 
with SGCV models [Fig. 1] and the ones with the 
SG models with U and V formulations [Fig. 2 (a)] 
are comparable at the same /L . The result with 
the SG with H and V formulation [Fig. 2 (b)] for 

 shows relatively larger error than the 
other results. According to Kristek et al., the U and 
V formulations are more accurate than the H 
formulation5). The authors think that this is a cause 
of the larger error. 

4. Conclusions 
In this paper, resonance frequency analysis of 

a Lamé mode resonator with the FD-TD method 
has been carried out. The SGCV and the SG with 
the stress-imaging technique are used to model the 
resonator. In the latter models, U and V 
formulations, and H and V formulations are applied 
to the free-surface boundary of the resonator. We 
have found that accuracy of the resonance 
frequency with the SGCV is comparable to the one 
with the SG with the stress-imaging technique with 
U and V formulations, and that free-surface 
boundary condition can be more simply imposed on 
the FD-TD method with SGCV. 
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Fig. 1 A Lamé mode resonator discretized with 
the SGCV. The hatched region denotes the 
resonator. 
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Fig. 2 A Lamé mode resonator discretized with 
the conventional staggered grids. Hatched regions 
denote the resonators. Grid points out of the 
resonators are for the stress-imaging technique. 
(a) U and V formulations and (b) H and V 
formulations, respectively, are used. 
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Table I Extracted resonance frequencies of the 
fundamental Lamé mode. Results with the SGCV 
and the conventional SG are shown. Here, U & V 
and H & V denote the results of the FD-TD model 
shown in Figs. 2 (a) and 2 (b), respectively.  

 Resonance Frequency [MHz] 

SGCV Conventional SG 
U & V H & V 

8 1.0047 0.9951 0.9879 
16 1.0023 0.9975 0.9975 
32 0.9999 0.9999 0.9999 
64 0.9999 0.9999 0.9999 

128 0.9999 0.9999 0.9999 

Fig. 3 Time response at the observation point for an 
SGCV model with 32/L .
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