Growth of Epitaxial KNbO3 Thin Films by Hydrothermal Method for Ultrasonic Transducers.

水熱合成法を用いた KNbO3 薄膜の製膜と超音波トランスデュ ーサへの応用

Seiya Ozeki^{1[†]}, Makoto Hosaki^{2¹}, Daisuke Kameyama^{3¹}, Satomi Ishida^{4¹}, Takahisa Shiraishi^{5²}, Hiroshi Funakubo^{6²}, Minoru Kurosawa^{7²}, Mutsuo Ishikawa^{8¹} (¹ Toin Univ. of Yokohama1; ² Tokyo Institute of Technology) 大関 誠也 1^{-1[†]}, 保崎 誠 2⁻¹, 亀山 大輔 3⁻¹, 石田 智美 4⁻¹, 白石 貴久 5⁻², 舟窪 浩 6⁻²,

黒澤 実7²,石河 陸生8¹ (¹桐蔭横大1,²東工大2)

1. Introduction

KNbO₃ is a candidate lead-free piezoelectric material for each application owing to its excellent piezoelectric properties. Moreover deposition methods of KNbO₃ films were recently reported. However the films of KNbO₃ and KNbO₃-based materials have not been utilized as ultrasonic transducers because it is difficult to deposit KNbO₃ thin films with superior electrical-mechanical properties. Therefore, we tried to fabricate 100nm thin films of KNbO₃ using hydrothermal method^{1/2/3)} without high temperature such as annealing process.

2. Experimental Procedure

The KNbO₃ thick films were grown at 240 °C on (100)_c SrRrO₃ // SrTiO₃ substrates by the hydrothermal method. The (100)_c-oriented SrRrO₃ layers used for bottom electrodes were epitaxially grown on the (100) SrTiO₃ substrates by a sputtering method. An autoclave (PARR, 4748) that contained an inner vessel made of Teflon to resist high alkali solutions was utilized for the hydrothermal growth. A 20 ml solution of KOH (Kantokagaku) and 1.0 g of niobium oxide powder (Nb₂O₅, purity 99.95%, Kantokagaku) were used as source materials of K and Nb, respectively. The (100)_c SrRrO₃ // SrTiO₃ substrate was kept facing down with a Teflon folder in the inner vessel, and the above-mentioned source materials were mixed and placed in the autoclave. The autoclave was shut tight and placed in a constant-temperature oven (Yamato DS-400) maintained at 240 °C for a hydrothermal chemical reaction.

The thickness of the obtained films grown on $(100)_c \text{ SrRrO}_3 // \text{ SrTiO}_3$ substrates was determined by a surface profilometer (Veeco DEKTAK 3ST). The crystal structure and the orientation of the films were characterized by X-ray diffraction analysis using a four-axis diffractometer (HRXRD; Philips X'Pert MRD system) with CuK α_1 radiation. The dielectric and piezoelectric properties were measured using Pt/KNbO₃/SrRuO₃ capacitors at room temperature; after Au or Pt deposition by evaporation method. The needle-type electrode was connected to the top electrode and the SrRuO₃ bottom electrode was grounded through the Ag paste. The dielectric properties and the piezoelectric properties were measured with an impedance analyzer (HP HP4194A) and a laser Doppler velocimeter (Polytec OFV-3001). Figure 1 shows the system used to measure the electrical mechanical characteristics of piezoelectric KNbO₃ films.

Fig.1 Measurement setup for piezoelectric displacement of KNbO₃ films.

3. Results and Discussion

Figures 2 shows logarithmic scale XRD patterns for the films deposited from 1 mol/l to 11 mol/l. {h00} peaks of the perovskite phase were observed from using 6 mol/l KOH solution. Figure 3 shows the change of the thickness of the obtained films with the concentration of the KOH solution from 6 mol/l to 11 mol/l. The thickness was approximately 100nm in 6 mol/l KOH solution.

Therefore, the P - E relationships measured at 100 kHz at room temperature is for shown in Fig. 3 the Pt/(100nm-KNbO₃)/SrRrO₃/ capacitor. Clear loops originated hysteresis from their ferroelectricity ferroelectricity were observed. Observed remanent polarization, P_r , was 20μ C/cm² at the maximum electric field of 1000 kV/cm. Figure 3 shows the relationship between the piezoelectric strain and the driving electric field versus strain measured at 100 kHz. The effective longitudinal piezoelectric constant, d_{33} ^{eff}, calculated from the linear region indicated in Fig. 3 from 0 to 100 V in the butterfly loops was estimated to be 35 pm/V. Additionally, dielectric constant ε_r at 100 kHz was Our present results indicate that the 50. hydrothermal method enables the excellent KNbO₃ thick film without any doping or solid solution, which might be related to the low process temperature of the hydrothermal method.

Fig. 2 Logarithmic scale XRD patterns of obtained films prepared.

Fig.3 Change of the thickness of the obtained films with the concentration of the KOH solution

Fig.4 Polarization and electric field (P-E) relationships measured at 100 kHz for Pt/(KNbO₃)/SrRrO₃ capacitor.

Fig.5 Displacement versus driving voltage butterfly loop of KNbO₃ thick film grown on (100)c SrRuO₃//(100) SrTiO₃ substrate at 100kHz.

4. Conclusions

The epitaxially-grown 100nm-KNbO₃ thin films were successfully obtained on the $(100)_c$ SrRuO₃//SrTiO₃ substrates. The dielectric constant ε_r was 50. The clear hysteresis loops and the butterfly-shape curve were observed. These results indicate that the hydrothermal method enables the excellent KNbO₃ thin films for ultrasonic transducers applications.

References

- 1) T. Morita, et al., J. Mater. Res. 19 (2004)
- M. Ishikawa *et al.*, Mater. Res. Soc. Symp. Proc, 1139, 1139-GG03-52 (2009).
- T.Shiraishi *et al.*, Jpn. J. Appl. Phys., 50, 09ND11-1-4 (2011)