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1. Introduction 
Because of the technological and scientific 

importance, free-vibration acoustic resonance 
(FVAR) of elastic mediums has been investigated 
extensively since the era of L. Rayleigh and W. Ritz 
[1,2]. One of a seminal work has been conducted by 
E. Mochizuki [3], in which he classified linearized 
FVAR modes by irreducible representations of point 
groups. Compared to the linearized systems, 
however, FVAR of nonlinear elastic medium is still 
relatively little understood and further investigation 
is needed. Recently, one of the authors (R.T.) 
investigated FVAR of a two-dimensional 
hyperelastic material and revealed that (i) colour
symmetry is embedded in the nonlinear FVAR 
modes and (ii) symmetry and structure of the 
nonlinear modes are expressed by magnetic point 
groups, rather than the irreducible representations 
[4]. By applying the result to a three-dimensional 
hyperelastic medium, we can generalize the 
linearized FVAR modes in [3] into finite amplitude 
nonlinear ones. However, to the authors’ knowledge, 
classification of nonlinear FVAR modes has not 
been reported yet. In the present study, we 
investigate the symmetry of three-dimensional 
nonlinear FVAR modes for rectangular 
parallelepiped shape crystals and classify them on 
the basis of the magnetic point groups. 

2. Magnetic Point Groups 

2.1 Point groups of three-dimensional solids 
 Let us consider a rectangular parallelepiped 

shape nonlinear hyperelastic material which is 
defined by . To 
simplify the analysis, we suppose that the elastic 
symmetry of  is orthorhombic, monoclinic or 
triclinic. According to Mochizuki, the 
corresponding point group and symmetry 
operations are summarized as Table 1 [3]. From the 
character table of group theory [5], we immediately 
see that the point group  has eight types of 
irreducible representations denoted by , ,

, , , ,  and . Similarly, 
irreducible representations of the point group 
is , ,  and  and those of the  group 
is  and .

Table 1. Point group symmetry and symmetry 
operations for rectangular parallelepiped shape 
triclinic, monoclinic and orthorhombic crystals. 

Crystal system Point 
group Symmetry operators 

Triclinic 

Monoclinic 

Orthorhombic

2.2. Magnetic point group 
Magnetic point group is consisting of 

symmetry operations in a point group and time 
reversal symmetry operation . Let  denotes a 
point group and let  be an invariant subgroup of 
index 2. Then, we can form a magnetic point group 
such that [5] 

This is called black and white, or bicolour magnetic 
point group. According to the expression, a 
conventional point group is written by 
and is called black or white, or single colour
magnetic point group. For the case of point group 

 (orthorhombic crystal), there exists eight types 
of single and bicolour magnetic point groups: 

, , , ,
, ,  and .

Similarly, for point group  (monoclinic crystal), 
we have four kinds of magnetic point groups: 

, ,  and . For 
point group , we have two magnetic point 
groups:  and .

2.2. Projection operation 
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We next introduce the projection operator P
for respective magnetic point groups. The definition 
of the operator is written in a standard textbook 
similar to [5]. For the case of magnetic point group 

 it becomes 

Let us express the displacement due to FVAR of 
by 

Then, the equation  project out a 
displacement component which is responsible for 
the vibration denote by .

3. Classification of Nonlinear FVAR modes 

Tables 1 to 3 summarize the symmetry of 
displacement function obtained from the projection 
operations. In the tables, E (even) and O (odd) 
denote the parity of displacement function  for 

 direction. For  cases, the symmetry is 
identical to that of a linearized system. However, 
for  cases, it is identical to totally 
symmetric mode . This result agrees well with 
previously obtained two-dimensional system. 

Table 1. Classification of nonlinear FVAR modes for a 
rectangular parallelepiped shape orthorhombic crystal. 

group 
O E E O E E
E O E E O E
E E O E E O
O E E O O O
E O E E E O
E E O E O E
O E E E E O
E O E O O O
E E O O E E
O E E E O E
E O E O E E
E E O O O O
O E E E O O
E O E O E O
E E O O O E
O E E E E E
E O E O O E
E E O O E O
O E E O O E
E O E E E E
E E O E O O
O E E O E O
E O E E O O
E E O E E E

Table 2.  Classification of nonlinear FVAR mode for a 
rectangular parallelepiped shape monoclinic crystal. 

group 
O E O E
O E O E
E O E O
O E E O
O E E O
E O O E
O E O O
O E O O
E O E E
O E E E
O E O O
E O O O

Table 3.  Classification of nonlinear FVAR mode for a 
rectangular parallelepiped shape triclinic crystal. 

group
O O 
O O 
O O 
O E 
O E 
O E 

4. Conclusions 

In this study, we investigated the symmetry 
of finite amplitude nonlinear FVAR modes for 
rectangular parallelepiped shape orthorhombic, 
monoclinic and triclinic crystals. Projection 
operations, derived from magnetic point groups, 
revealed that the symmetry depends on the parity of 
n: for  cases, it is identical to that of a 
linearized system whereas otherwise it becomes .
This result agree well with that obtained from a 
two-dimensional system. 
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