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1. Introduction

In phononic crystals (PhCs), there exist the 
phononic band-gaps (i.e., frequency gaps or 
phononic stop bands) due to the Bragg reflections 
of the phonons [1]. Recently, PhCs consisting of 
solid and fluid layers have been studied [2-4]. 

Ultrasonic band-gaps were clearly observed 
for sound propagating through a one-dimensional 
periodic array of water and perspex plates [2,3].
These studies demonstrated that the frequencies and 
widths of the ultrasonic band-gaps can be 
engineered. In these studies, the direction of the 
propagation is limited to normal to the interface. In 
this case, mode conversion does not occur at the 
interfaces between solid and fluid layers. Thus, only 
the longitudinal vibrational modes were considered.

On the other hand, Hassouani et al. studied 
the sagittal acoustic waves in finite solid-fluid SL
theoretically, using the Green’s function method 
[4]. In this paper, they suggested the existence of 
flat bands in these structures.

In the present paper, we theoretically study
the peculiar properties of phonons in PhCs
consisting of solid and fluid layers and examine the 
flat bands.

2. Method of Calculation

We assume that the solid layers are isotropic 
continuum. In this approximation, the phonon 
modes polarized in the sagittal plane and the
horizontally polarized shear mode are decoupled. 
Then, sagittal modes are considered.

Next, liquid is assumed to be ideal. In this 
approximation, viscous shear stresses vanish in the 
fluid layers and at the interfaces between solid and 
fluid layers.

The boundary condition we should use is that 
the stress normal to the interface and the normal
component of the velocity of phonon are continuous 
at the interfaces between solid and fluid layers.

The above boundary conditions are expressed 

in terms of the transfer matrix. Using the transfer 
matrix method, we calculate numerically the 
dispersion relations of the solid-fluid PhCs.
Moreover, transmittance of phonons propagating 
through the finite solid-liquid PhCs are also 
calculated.

3. Numerical results and discussions

Fig. 1 The phonon dispersion relations calculated 
for a Plexiglas/water phononic crystal. The thickness
df of a fluid layer is assumed to be 4ds, where ds is the 
thickness of a solid layer. The red and blue lines 
illustrate the longitudinal and transverse velocities in 
Plexiglas, and the green line is the longitudinal 
velocity in water.
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As a numerical example, we illustrate in Fig. 1
the phononic band structure of a PhC consisting of 
water and Plexiglas.

In this calculation, parameters we used are as 
follows: = 1.20 g/cm³, tv = 1.38 km/s, and v
= 2.70 km/s for Plexiglas; = 1.00 g/cm³, v =
1.49 km/s for water. The thickness fd of a fluid
layer is assumed to be 4 sd , where sd is the 
thickness of a solid layer.

In Fig.1, the allowed frequencies are plotted 
for each xk , which is the wave vector component
parallel to the interfaces. That is, the white regions 
correspond to the phononic band-gaps, and the 
coloured regions are the allowed frequencies, i.e., 
the phononic bands. In this figure, the longitudinal 
and transverse velocities in Plexiglas are shown as 
the red and blue lines, respectively. In addition, the 
green line is the longitudinal velocity in water.

The width of a phononic band is a function of 
xk . Figure 1 shows that the band widths become 

zero at several xk , which are denoted by the points
A and B. These correspond to the flat bands, that is, 
these bands have no dispersion as a function of zk ,
the wave vector component perpendicular to the 
interfaces. This is a noticeable feature of the 
phononic bands of the solid-fluid PhCs. The point 
A exits below the red line, whereas the point B is 
located above this red line. 

To demonstrate the flat band, we illustrate in 
Fig.2 the transmission rates and dispersion relations
of the PhC for the incident angle 29 . This 
angle is slightly different from an angle at which 
the exact flat band exists. This difference leads to 
the finite width of the flat band. In the calculations 
of phonon transmission rates, the PhCs with the
periods N=1, 2, 4, and 8 are assumed to be in water.
At the frequencies and incident angles 
corresponding to to points A and B in Fig.1, the 
width of the phonon band becomes zero exactly.

4. Conclusions
We have numerically calculated the dispersion 

relations and transmission rates for phonons in a
phononic crystals consisting of Plexiglas and water.
In these systems, the existence of the flat bands is
clearly demonstrated. The velocity and stress fields 
corresponding to the flat band will be given 
elsewhere in the near future.
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Fig. 2 Phonon transmission rates and dispersion 
relations of the Plexiglas/water phononic crystals. The 
propagation angle is assumed to be 29 in water.
In the calculations of phonon transmission rates, the 
periods of the phononic crystal are assumed to be 
N=1, 2, 4, and 8.
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