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1. Introduction 

     In the field of engineering, the analysis in the 
frequency domain has been widely adopted in a 
lumped-parameter basis. For example, the 
characteristics of the electromechanical coupling 
system can be analyzed by calculating the 
relationship between electrical resonance frequencies 
and antiresonance frequencies on a lumped-parameter 
circuit. In this method, the existence of 
lumped-parameter dielectric capacitance components 
(C0 in Mason’s circuit) is inevitable. The dielectric 
capacitance component represents the phenomenon in 
which the elastic vibration interacts with the 
dielectric effect in the system and the acoustic speed 
is changed. The methodology using lumped 
parameters is essentially a basis of classical 
Newtonian mechanics.  
     However, some problems are revealed in the 
treatment of classical framework when the analysis is 
performed in the time domain 1); that is, when 
transient or impulse response of the system is 
calculated. Unfavorable results are caused by the 
existence of dielectric capacitance and the dissipation 
(loss), which suggests the application limitations of 
classical Newtonian mechanics.  

Since the quantum theory includes the classical 
theory within it; in other words, the framework of 
Newtonian mechanics can be derived from the 
quantum mechanics, the quantum theory should also 
be investigated from the viwepoint of the treatment 
of dielectric and dissipation phenomena.  

In the analysis of electromechanical coupling 
systems, a method termed "complex series dynamics" 
1-6), in which an interaction process between "elastic 
mode" and "dielectric mode" has been developed; it 
can treat the phenomenon on a distributed-parameter 
basis without any conventional lumped-parameter 
components.  

In this study, with regard to the treatment of 
dielectric and dissipation phenomena, the 
disadvantage of the classical and quantum 
mechanical framework is discussed, and the 
improvement of the treatment using complex series 
dynamics is discussed from the viewpoint of the 

comparison with the classical and quantum 
mechanical framework. 

 
2. Treatment of Dissipation Phenomenon  

     In quantum mechanics, the time evolution of a 
state vector is expressed with  
 
    |ψ (t) = U(t, t0) |ψ (t0) ,                (1) 
     
where  
 
    U(t, t0) = exp(−jH(t – t0) / )            (2) 
 
in the Schrödinger picture, where t0 is an initial time,  
|ψ (t) is a state vector at time t, U(t, t0) is a unitary 
operator for the non-dissipative evolution from time 
t0 to t, and H is the Hamiltonian operator. The wave 
function ψ(x,t) is changed as 
 
   ψ(x,t) = K(x, t; x0, t0) ψ(x0, t0) dx0 ,       (3) 
 
where   
 
   K(x, t; x0, t0) = x U(t, t0) | x0
 
The Feynman kernel K(x, t; x0, t0) can be calculated 
by the superposition of phase factor in the form of  

 
    exp(jS/ ),                          (5) 
 

on all the possible paths in the system, where S is the 
time integral of Lagrangian L---the action integral.  
    However, when the dissipation is included in the 
system, the treatment of Hamiltonian H or 
Lagrangian L becomes difficult, which is the 
disadvantage of the quantum theory. The 
“Caldeira-Leggett model”6)  can treat the dissipation 
in the framework of quantum mechanics, in which 
some interaction with “environment” is considered 
by introducing interaction terms in Lagrangian. Some 
complicated calculation leads to the classical 
equation of motion with a dissipative term.   

   However, the classical equation of motion is 
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described with a time differential equation of second 
order, and therefore, two eigenvalues (two resonance 
frequencies) for one spatial degree of freedom are 
obtained by solving the equation. As the dissipation 
becomes larger, an unreasonable situation for the 
phenomenon of wave propagation occurs, since one 
of the two eigenvalues approaches zero. The 
inconsistency caused in the framework of Newtonian 
mechanics suggests that the same inconsistency is 
potentially included in the framework of the quantum 
mechanics, from which the Newtonian mechanics is 
derived.  
    In the author’s method (complex series 
dynamics), not only mechanical (elastic) but also 
electric (dielectric) phenomena in the 
electromechanical coupling system can be treated. 
The characteristics of the system is obtained by the 
superposition of energy modes with the following 
forms of phase factor: 
 
  Elastic mode:  exp(−jωT− ae),            (6) 
 
  Dielectric mode: exp(−j0 − ad) = exp(−ad),   (7) 
 
where ω is the angular frequency of the elastic mode 
as a wave, T is propagation time for the elastic mode 
to pass through a spatial domain in the system, and ae 
and ad are attenuation factors of elastic and dielectric 
modes, respectively, on the spatial domain. The 
superposition is performed over all the possible paths 
in the system. This methodology of superposition is 
similar to that of Feynman's path integral.  
     However, in Feynman's method, when 
 
      L = p dx/dt – H = k dx/dt – ω ,      (8) 
 
where p is the linear momentum and k is the wave 
number, eq. (5) becomes 
 
     exp(jS/ ) = exp(j k(x – x0) - j ω (t – t0)),  (9) 
 
in which the quantum particle propagates from (x0, t0) 
to (x, t). For wave propagation, the amplitude and 
phase in eq. (7) do not change from (x0, t0) to (x, t).  
     On the other hand, in the complex series 
dynamics, the spatial translation is expressed with the 
shift of the elements of a vector. For example, for the 
spatial degree of freedom N = 4, the state is 
expressed with 
 
    η  = (η1, η2, η3, η4),                    (8) 
 
and the spatial translation from the domain 1 to the 
domain 2 is expressed conceptually as 
 
  Elastic mode: 

 (1, 0, 0, 0)  (0, exp(−jωT− ae), 0, 0) ,    (10) 

Dielectric mode: 
 (1, 0, 0, 0)  (0, exp(− ad), 0, 0),         (11) 

 
when the coupling between the modes does not 
occur.    
     When the coupling occurs, the energy between 
the modes is exchanged with each other via an 
unitary matrix. The advantages of the present method 
over Feynman’s method (eqs. (8) and (9)) are as 
follows: 
  (i) The dissipation can be described; 
  (ii) The energy exchange and the spatial 
distribution of the mode are easily calculated. 
 

3. Treatment of Dielectric Phenomenon  

     In the complex series dynamics, the interaction 
between the elastic mode and dielectric mode is 
expressed with two types of unitary processes:   
  (i) One is termed "point interaction'' in which a 
finite quantity of coupling between the two modes 
occurs on a spatial point on the system with an 
infinitesimal interaction length;  
  (ii) The other is termed "continuous interaction'' in 
which an infinitesimal quantity of coupling between 
the two modes occurs in an integral manner in a finite 
interaction length on the system.  
    The combination of the two types of unitary 
processes can only lead to the correct calculation 
result corresponding to an actual physical 
phenomenon, while the conventional lumped- 
parameter-based equivalent circuit methods cannot 
deal with electromechanical coupling systems 
reasonably in the time domain.1) This suggests that 
the phenomenon is not caused on a classical lumped- 
parameter basis, but essentially on a distributed- 
parameter basis. 
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