
On Modeling of Oblique Propagation of Acoustic Waves 
in Infinitely Long Grating Structures 

Gongbin Tang1,2, Tao Han1, Jing Chen1, Tatsuya Omori2, and Ken-ya Hashimoto2,1†

(1Shanghai Jiatong University, 2Chiba University)
1,2, 1 1 2, 2,1† (1 , 2

1. Summary 
For designing high-performance surface acoustic 

wave (SAW) resonators, SAW energy must be 
confined well within the device structure toward not 
only the longitudinal (x) but also transvere (y)
directions. Or the lateral leakage causes degradation 
of the resonator quality factor. However, when the 
wave guiding is strong, higher-order resonances 
may appear1,2).

For the analysis of in-plane SAW propagation, a 
behavior model called the scalar potential theory3)

has been widely used. It can be integrated into the 
coupling-of-mode (COM) theory4) and the p-matrix 
theory5) to take the influence of SAW excitation and 
reflection into account. Recently, the authors 
proposed another behavior model named the “thin 
plate model”, based on wave equations to take 
various complicated effects into account6).

Full wave simulations such as the finite element 
analysis are quite powerful, and we can analyze 
SAW propagation in various structures in good 
accuracy. However, their computation speed is still 
slow, and we must use an appropriate behavior 
model for the simulation of practical SAW devices. 

This paper discusses how parameters required in 
the behavior models should be extracted from 
results obtained by the full wave analysis. 

2. Resonance condition 
Let us consider SAW propagation in a periodic 

grating shown in Fig. 1. In the figure, p is the 
grating period. When the grating extends infinitely 
to both the x and y directions, the Floquet theorem 
indicates that the displacement field u can be 
expressed in the following form: 
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where Un is the expansion coefficient, n= x+2n /p,
and x and y are the wavenumbers of the grating 
mode toward the x and y directions, respectively. 

In SAW devices, acoustic resonances including 
transversal ones occur when both x and y are real, 
and they can be excited efficiently by IDTs only 
when x~ /p. Thus we focus our efforts on analysis 
and modelling of variation of y with the frequency 
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when x is fixed at /p.

Fig. 1 SAW Propagation in infinitely long grating 

3. Simple model 
Here we discuss wave propagation in the structure 

shown in Fig. 1 by the use of thin plate model6), but 
electrical excitation is ignored. In the model, 
stiffness cij is assumed to be uniform throughout the 
structure, and variation of the structure is 
considered as that of the mass density .

Let us consider propagation of shear vertical 
waves in the x-y plane. Then its propagation is 
governed by the following wave equation: 
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where cij is the stiffness,  is the radial frequency, 
and =c44/c55 is a parameter of the substrate 
anisotropy. Since  changes periodically with x, it is 
expressed in the Fourier Expansion form as 

n
n pjxnRcx )/2exp()( 55   (3) 

where Rn is the expansion coefficient. Note that 
R-n=Rn

* because (x) is real, and Rn is real when the 
structure is symmetric with respect to the x2 axis. 

Substitution of Eqs. (1) and (3) into (2) gives 

0)exp(

222

yjxj

URUU

yn

n m
mnmnynn  (4) 

So that Eq.(4) holds for arbitrary x, the following 
condition must be satisfied for arbitrary n:
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When we consider only the coupling between the 
components with n=0 and n=1, Eq. (5) reduces to 
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Fig. 2 shows the calculated x- y curve at 
pR0.5= . In the calculation,  is set at unity 

(isotropic), and |R1| is set at 0.0475 /p.
Two semi-circles 

centered at x=0 and 
x=2 /p are seen. The 

former corresponds to 
the forward 
propagating mode, and 
the latter does a 
component of the 
backward propagating 
mode generated by the 
spatial modulation in 
the periodic grating. 

Two imaginary 
branches start from the 
edges of semi-circles 
where y=0. They 
correspond to the 
evanescent modes 
(decaying toward the 
±y direction). 

When x= /p, Eq. (6) reduces to 
2
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When 5.0
10 |)|(/ RRp , y is imaginary, 

namely, evanescent toward the x direction, and thus 
the transverse mode resonance does not occur in 
this frequency region. On the other hand, when

5.0
10 |)|(/ RRp , y is real. Thus transverse 

mode resonances will occur provided that the 
transverse resonance condition is also satisfied. 

In Eq. (7), the plus sign specifies the branch 
passing through the lower stopband edge while the 
minus sign specifies the branch passing through the 
upper stopband edge. 

It should be noted that, when the IDT structure is 
symmetric with respect to the y axis, i.e., when Rn is 
pure real, one of these two branches are electrically 
excitable. Namely, the branch with the plus sign is 
electrically excitable when the main resonance 
occurs close to the lower stopband edge while the 
branch with the minus sign is excitable when the 
main resonance occurs close to the upper stopband 
edge. The remaining branch will be also excited 
when the resonator structure possesses asymmetry. 

We can also derive Eq. (7) from the two 
dimensional COM theory4).

4. Fitting 
Fig. 3 shows variation of y with p/VB for the 

short-circuited Al grating with the thickness of 0.1p
on the 128oYX-LiNbO3 substrate when x= /p.
Here VB (=4,025 m/s) is the slow shear bulk wave 
velocity. The calculation was performed by the 
modified version of the software OBLIQ8), which 

was developed by the authors to analyze SAW 
oblique propagation in periodic grating structures. 

As we expected, when f<0.498VB/p, y is
imaginary, namely, evanescent toward the x
direction, and when f>0.498VB/p, y is real. It
should be noted that 0.498VB/p corresponds to the 
upper edge of the stopband. Another branch of y is 
not shown in this figure because it is not 
piezoelectrically active. The branch passes through 
the lower edge of the stopband at f=0.475VB/p.

Fig. 3 Change of y with frequency when x /p. Bold 
lines: calculated by modified OBLIQ, and thin lines: 
calculated by the simple model. 

In the figure, y calculated by Eq. (7) is also given. 
It is seen that variation of y with  can be modeled 
well by this simple model which takes the Bragg 
reflection into account. Discrepancy can be seen at 
frequencies much larger than 0.498VB/p. This may 
be due to complex anisotropy of the SAW slowness 
curve on the 128oYX-LiNbO3 substrate.  
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Fig. 2 Calculated x- y
curve at pR0.5= .
Solid lines: real part, and 
broken lines: imaginary 
part.


