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1. Introduction 

The piezoelectric materials are used in 
resonant type devices which are driven under high 
power condition. Usually, these piezoelectric 
devices are designed using FEM. In FEM 
calculation, only the linear piezoelectric effect is 
taken into consideration. However when the 
piezoelectric devices are driven under high power 
condition, the nonlinear piezoelectric vibrarion 
becomes appearent. In that case, the simulated 
results differ from the actual one. To overcome this 
problem, the FEM involving nonlinear piezoelectric 
vibration should be developed. The purpose of this 
study is to establish the nonlinear model of the 
piezoelectric viblation for FEM. Differently from 
the privious studies focusing on the third term 
nonliniarity1)2), we studied about the second term 
nonlinearity because it is larger than that of third 
term coefficient. 
 
2. Nonlinear model 

In this study, the plate type piezoelectric 
transducer was utilized (Hard type, C203 Fuji 
ceramics). The material constants of this transducer 
are shown in Table 1. In this model, x origin is the 
center of the transducer and we measured the 
longitudinal vibration. The heat generation also 
affects the nonlinearity3); therefore to eliminate the 
effect of heat generation, we established the 
measurement system using function generator 
(WF1948), laser doppler velocimeter (NLV2500), 
high speed amplifier (HSA4052) and lock-in 
amplifier (LI5640). In this system, the interval time 
between vibration excitation can be controlled. 
With this control, the temperature was kept 
constant. 

 
Fig. 1 Measurement 

Table1 Material constant 
Stiffness  Density ρ Qm 

 N/m2 kg/m3 2000 
 

In the linear model, the stress and the strain are 
expressed as proportional, 
 

 . (1) 
 

where , , s1 and u are the strain, the stress, the 
compliance and the vibration 
displacement ,respectively. 
We added the second term ( ) to explain the 
effect of the second harmonic vibration mode as 
 

.  (2) 
 

By integrating this equation, we obtain the vibration 
displacements as a function of x, 
 

. (3) 
 

In this equation, the part of second harmonic ) is 
defined as 
 

. (4) 
 

The stress T 1was adopted based on the liner model.  
 

 (5) 
 

where is resonant frequency and c is sound 
velocity, respectively. 

 
Finally the second harmonic frequency on each 
position x is deduced as 
 

 
(6) 

where L is transducer length. 
By measuring the displacement of second 

harmonic vibration, we can calculate the nonlinear 
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parameter. 
3. Mode shape of the second harmonic vibration 

To obtain the nonlinear parameter, we 
measured the mode shape of second harmonic 
vibration at the resonant frequency (35.5kHz) with 
100Vpp input voltage. This transducer is symmetric 
so we measured the half of the transducer. Figure. 2 
shows the mode shape of the transducer and the 
fitting curve with our model. 
 

 
Fig. 2 Mode shape of the second harmonic vibration 

 
The fitting result was well fitted and the value was 
calculated to be 3.6×10-21 [m4/N2] from this 
measurement. 
 
4. The  calculation from the velocity at the 

tip of the transducer 
 The amplitude of the stress at the center of 
transducer ( ) and that of velocity with driving 
frequency at the tip  are also proportional in 
linear model expressed as 
 

.  (7) 
 
From the equation (6), the displacement of the 
second harmonic vibration at the tip of transducer is 
 

.     (8) 
 
By calculating the temporal differentiation of 

equation (8), the velocity is expressed as 
  

 

     (9) 
 
From equation (7) and (9), the relationship 
between  and  is expressed as 
 

 (10) 
 
Using a lock-in amplifier (LI5640), we measured 

the velocity with the driving frequency and that 
with the second harmonic frequency. The 
measurement result and the fitting curve with 
equation (10) were shown in Fig. 3. From this curve 
fitting ,the calculated value of was calculated 
to be 3.4×10-21 [m4/N2]. This value was the almost 
same to the value calculated from mode shape 
measurement (3.6×10-21 [m4/N2]). This curve fitting 
indicates that the value of  can be treated as a 
constant parameter regardless of frequency.  
 

 
Fig3. Relationship between  and  

 
5. Conclusion 

In this study, we established the second 
harmonic vibration model. This model was verified 
by calculating from the mode shape 
measurement and the velocity at the tip of the 
transducer. During the measurements, the 
temperature was kept constant to eliminate the 
effect of temperature increase. To introduce this 
nonlinear model to the FEM, the effect of the heat 
generation while driving should be considered in 
the next study. 
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