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1. Introduction

In the analysis of electromechanical coupling
systems, some equivalent-circuit methods based on
Newtonian mechanics have been utilized, and they
include some lumped-parameter components in order
to represent the interaction process between elastic
phenomenon and dielectric phenomenon. On the other
hand, the distributed-parameter-based treatment of
vibration analysis has been developed without using
any lumped parameter components, in which the
“energy mode” propagates and interferes with each
other in a manner of “probabilistic” superposition
inside a transducer. The distributed-parameter-based
treatment is appropriate for investigating local
properties of the transducer. The concept of energy
mode is derived from Dirac's “complex (non-real)
dynamical variable” in which its magnitude is
proportional to the square root of stored energy, and
the energy mode also has a property of phase that
causes propagation and interference phenomenon.

In this methodology, the calculation of energy
mode's infinite geometric series that reflects the
boundary condition of the transducer leads to the
characteristics of the transducer from the viewpoint of
stored energy---This methodology is termed “complex
series  dynamics”.'  The phenomenon  of
electromechanical coupling is treated by considering
the interaction between “elastic mode” and “dielectric
mode”. The elastic mode and dielectric mode are
considered to be coupled in two types of unitary
(energy-conservative) processes: One is termed “point
interaction” in which a finite quantity of coupling
between the two modes occurs on a spatial point with
an infinitesimal interaction length, and the other is
termed “continuous interaction” in which an
infinitesimal quantity of coupling between the two
modes occurs in an integral manner in a finite
interaction length, as shown in Fig.1 conceptually.

In the analysis of an electromechanical transducer,
its low-frequency-limit characteristics are important,
since the electromechanical coupling coefficient is
defined at the situation of low frequency limit. In this
study, by investigating the situation of low frequency
limit in the conventional equivalent-circuit methods
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Fig.1 Two types of unitary (energy-conservative)
processes between elastic mode 1. and dielectric
mode ng: (@) point interaction, and (b) continuous
interaction.

and the complex series dynamics, some problems
included in the conventional methods are discussed,
and the advantages of the complex series dynamics are
clarified.

2. Treatment of Interaction Phenomenon

The elastic mode m. has
multiplying factor d. in the form of

a propagation

d. = exp(—jk x - a.)
= exp(—jo x/c - a), (1)

where j is the imaginary unit, x is a one-dimensional
coordinate in the direction of elastic wave propagation,
k is a wavenumber vector of the elastic wave, o, is a
loss factor, w is an angular frequency of the elastic
wave, ¢ is the acoustic velocity, respectively. The
transducer is divided into multiple layers in the wave
propagation direction, and n, has a reflection factor 7,
at the boundary between spatial domains #i and #i+1,
when 1. propagates through from #i to #i+1, given by



re={Ze (i) = Zo (D} Z. (D) + Ze (i +1)}, (2)
where Z, (i) is a mechanical impedance in #i.

On the other hand, the dielectric mode mq4 is
always regarded as a static one; that is, low frequency
limit of wave propagation is considered essentially,
and has a propagation multiplying factor dy in the form
of

dq = exp(- ), (3)
where o4 is a loss factor. ng is expected to have a
similar reflection multiplying factor to r., given by
ra=A{Za () = Za(+DI{ Za () + Za (1)}, (4)
where Zy(i) is a quantity corresponding to “impedance”
for dielectric mode in #i.

In ref. 2, a system composed of homogeneous N
spatial domains was treated, where

Z:(1)=2.(2)=...=Z:(N),

Ze() =24 = .. = Zs(N), 5)
(impedance matching system), with all N domains
piezoelectrically driven. The configuration of
electrodes is shown in Fig. 2(a) in the case of
longitudinal (L-) effect, and in Fig. 2(b) in the case of
transverse (T-) effect. Figure 2(c) shows the division
of the system in the case of N = 4.

The point interaction shown in Fig. 1 was
empirically found out to occur only at the “edges” of
the system with length 8 — 0 shown in Fig. 2(c), that
is, in the form of Dirac’s spatial delta function. This
treatment leads to physically appropriate results when
the electromechanical coupling occurs; that is, the
acoustic velocity of the system is changed, and the
resonance frequencies are shifted. The resonance
curve is symmetrical about the resonance frequency,
whether the electromechanical coupling occurs or not.
This behavior is different from that in the classical
admittance near the resonance with asymmetrical
characteristics due to the “dip” in admittance at
antiresonance.

The location of positions on which the point
interaction occurs is highly-related with the result of
probabilistic superposition of dielectric mode. In the
spatial N-domain system with the boundary condition
mentioned above, if the dielectric mode behaves
independently of the elastic mode, that is, without any
interaction with elastic mode, the probabilistic
superposition of dielectric mode leads to

Magiys Nagzps -+ NapN1y Napyy) ~ (1,0,..,0,1)
(6)
in the frequency domain (not in the time domain),
where M4y (normalized appropriately) is the resultant
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Fig. 2 Electromechanical coupling system for (a)
longitudinal (L-) effect and (b) transverse (T-) effect.
(c) Division of the whole domain into N domains.

dielectric mode after superposition observed on the
spatial domain #i. As the number N is increased, the
dielectric mode is “localized” at the “edges” of the
system, which equals to the positions where the point
interaction is assumed to occur. In the framework of
the complex series dynamics, such consideration of
localization leads to physically appropriate results
when the electromechanical coupling occurs.

On the other hand, in the conventional methods,
the consideration of low frequency limit leads to the
“non-localized” or spatially homogeneous situation.
For example, the “dip” in admittance at antiresonance
is caused by the dielectric capacitance that is regarded
as spatially homogeneous in the frequency domain,
and the “dip” leads to an undesirable result in the time
domain when the inverse Fourier transform is
considered, as pointed out in ref. 1.
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