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Effects of curvatures and torsions on dispersion property
of guided waves propagating in a helical structure

obtained by a semi-analytical finite element method
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1. Introduction

Guided wave ultrasonic modes propagating
over long distances can be applied to non-destructive
evaluation(NDE) for wire-ropes. Guided waves have
a dispersion property, which represents frequency
dependence of propagation velocities. Therefore, for
effective use of guided waves, we need to know this
property, which is usually expressed as dispersion
curves|[1]~[2].

Dispersion curves of complex structures
including wire-ropes are generally obtained by a
semi-analytical finite element (SAFE) method [2]
~[9]. Treyssede et al. discussed dispersion curves in
a helical structure obtained by the SAFE method.
However, they did not examine effects of curvatures
and torsions on the dispersion property of guided
waves propagating in a helical structure. The purpose
of this study is to numerically investigate such
effects.

2. A helical coordinate system

Let (x, y, s) denote a curvilinear coordinate
system attached to a curved waveguide, where x and
y are the cross-section coordinates and s is the axial
coordinate. A helical coordinate system (7, 6, s) can
be defined by introducing the helix centerline curve,
described by the following position vector in the
Cartesian orthonormal basis (ey, ey, €g):

R(s) = Rcos (0 +27ns) e, + Rsin (9 +ZT"5) ey +%es, (1)

where | =+VIL? + 4m?R? is the curvilinear length
of one helix step and L is the helical pitch (see Fig.
1). The unit tangent (7(s)), normal (/V(s)), and

binormal vectors (B(s)) to the centerline are obtained
dR(s)

from T(s) = I and Serret-Frenet formule:
dT
) = kN (s), )
ING) — _1B(s) + kT(s), 3)

ds

PO = —n(s). 4)

R and the torsion

. 4m?
For helix, the curvature k = 2

2L
T= TR are constant.

R(s): Position vector
N(s): Normal vector S
1(s): Tangent vector /
B(s): Binormal vgetér

Fig. 1 A helical coordinate

3. A formulation of a semi-analytical finite
element method

The SAFE method adopts a harmonic
exponential term, e!®*S~@%) to describe properties
of guided waves, where s represents the guided wave
propagation direction, k represents the wavenumber,
@ represents the angular frequency, and 7 represents
time.

A governing equation can be obtained
through the virtual work principle:

J, suT(pi)dv + [, se'edV =0. (5)



After the FE discretization of the formulation (5), we
can develop the expression for a formulation of
SAFE:

(K] + ikK} + k2K}, — @M’ )u/ = 0. (6)
Details of these matrices are described in ref[5].

3. Dispersion properties of guided waves

propagating in helical structures

Fig. 2 shows dispersion curves for k=0 /m,
7= 0 /m and k= 50 /m, 7= 50 /m obtained by the
SAFE method. L(0,1)-mode, T(0,1)-mode and
F(1,1)-mode change into L(0,1)-like-mode, T(0,1)-
like-mode and two F(1,1) -like-modes, respectively,
by the curvature and torsion. If the structure has a
curvature, guided waves of L.(0,1)-mode and T(0,1)-
mode do not propagate in a lower frequency band.

Fig. 3 shows change of the phase velocity
with the curvature at the input frequency of 0.01
MHz for a structure with =0 /m and 50 /m. Fig. 4
shows the change of the phase velocity with the
torsion at the input frequency of 0.01 MHz for a
structure with k=0 /m and 50 /m. If the structure has
a curvature, guided wave of F(1,1)-mode bifucates
as the torsion increases.
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Fig. 2 Dispersion curves of helical structures
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Fig. 3 Dependence of phase velocities on curvatures
at the input frequency of 0.01 MHz
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Fig. 4 Dependence of phase velocities on torsions at
the input frequency of 0.01 MHz

4. Conclusions

A numerical method of calculating
dispersion curves for helical structures has been
developed by introducing the helical coordinate. The
phase velocities of L(0,1)-mode and T(0,1)-mode
increase as the curvature increases in a lower band.
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