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1. Introduction 

AT-cut quartz resonators utilizing the thickness 
shear mode (TSM) are used widely as frequency 
reference in an electronic system. However, the 
supporting condition of a quartz plate affects 
tremendously the TSM characteristics. For example, 
the unwanted flexure and loss would be induced by 
the anchors, which attach the quartz plate to the 
substrate. In particular, the trend in miniaturization 
makes the problem more serious. To improve the 
attachment effects, a quartz plate with beveled edge 
was proposed [1-3].  

Phononic crystals [4-5] are artificial structures 
with periodic variation of elastic property. 
Analogous to photonic crystals, phononic crystals 
with band gaps forbid acoustic waves within the 
frequency ranges of band gaps to propagate through 
the structure and reflects completely the acoustic 
waves. In 2015, the air-hole phononic crystals were 
utilized for trapping acoustic energy of the AT-cut 
quartz resonators for the first time [6]. Although the 
anchor loss is reduced significantly, the air-hole 
phononic crystals lower the impact strength of the 
AT-cut quartz resonators.    

In this paper, the pillar phononic crystals are 
utilized for trapping acoustic energy and reducing 
anchor loss of AT-cut quartz resonators but keeping 
impact strength. A 3D model of quartz resonators is 
developed by using the finite element software, 
COMSOL. Finite element analyses of the AT-cut 
quartz resonators with phononic crystals and the 
lossy epoxy attachments, as shown in Fig. 1, are 
presented herein. The resonance response of an 
AT-cut quartz resonator with no phononic crystal is 
first calculated. A square-lattice phononic crystal 
plate, made of an AT-cut quartz plate with wolfram 
pillars, is analyzed and designed to have a complete 
band gap covering the quartz resonator’s resonance 
frequency. Finally, the mode shape and impedance 
of the quartz resonators with three rows of 
wolfram-pillar phononic crystals are simulated to 
evaluate the isolation performance of the phononic 
crystals. 

2. Resonanace analysis of quartz resonator with 

no phononic crystal 
The AT-cut quartz resonator with no phononic 

crystal was characterized by calculating its 
eigenfrequency and frequency response. The 
material constants of quartz crystal used in the 
simulation are from Ref. [7]. The material constants 
of the epoxy attachments are listed in Table I. The 
electrode is Au film whose constants can be found 
in COMSOL material library. Besides, the loss 
constants of quartz crystal, Au film, and epoxy are 
10-6, 10-5, and 10-4, respectively. The resonance 
frequency of the TSM mode is around 16.42 MHz 
when the quartz plate is 0.1 mm in thickness. In Fig. 
2, the total displacement field of the TSM 
resonance shows the flexure component in TSM 
appears stronger when the epoxy attachments are 
introduced, which indicates the boundary of the 
quartz plate seriously affects the resonance 
characteristics. Moreover, the frequency response 
shows that the AT-cut quartz resonator with no 
phononic crystal has an impedance of 75.78 Ω.  

3. Bandgap analysis of wolfram-pillar phononic 
crystals 

The band structure of a square-lattice phononic 
crystal plate, made of an AT-cut quartz plate with 
wolfram pillars, was calculated by the finite 
element method. As shown in Fig. 3, the height H, 
lattice constant a, and radius r of the unit cell are 16, 
111, and 49.95 μm, respectively. The frequency 
band structure of Lamb waves in the phononic 
crystal plate depicts the square-lattice phononic 
crystal plate gives rise to a complete band gap from 
16.37 to 16.51 MHz, which covers the quartz 
resonator’s resonance frequency.  

4. Resonanace analysis of quartz resonator with 
wolfram-pillar phononic crystals 

The AT-cut quartz resonators with phononic 
crystals were analyzed to evaluate the isolation 
performance of the phononic crystals. The mode 
shape of the AT-cut quartz resonator with 3 rows of 
the designed wolfram-pillar phononic crystals are 
shown in Fig. 4. The AT-cut quartz resonator with 
the phononic crystals has a more centralized 
diaplacement field distribution than the one without 
phononic crystals, indicating that the phononic 
crystals indeed contribute to a confinement of ---------------------------------------------------------------- 
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and shear wave were 5,950 and 3,240 (m/s), 
respectively. The surface and a defect of a billet was 
assumed to be a free boundary, on which stress is 
zero. The mesh size and the time step was 0.1 mm 
and 1.12 ns, respectively. The input signal was 
up-chirp signal, whose frequency is 0.5-1.5 MHz 
with duration of 10 s windowed by Hann window. 
To obtain  only considering bottom echoes, the 
received signals between 33 and 45 s were used 
for the calculation of the cross-correlation function. 
A defect with diameter D exists at (x, y), as shown 
in Fig. 2. A transducer with an aperture of 6 mm 
were located at (X, 50). Scanning pitch of the 
transducer was 0.5 mm. 

To evaluate relationship between defect size 
D and TOF deviation , a defect was located at 
center of the cross section (x, y) = (0, 0) and D was 
varied from 0 to 15 (mm). The results are shown in 
Fig. 3. Figure 3(a) shows TOF profile at D = 2, 5 
and 8 (mm). The shape of the profile varies as the 
size of the defect varies. Figure 3(b) shows the 
relationship between D and  at transducer 
position X = x = 0 mm, same as defect position x. 
The blue line shows  of bottom echo and the red 
line shows that of transmitted wave.2)  of bottom 
echo is larger than that of transmitted wave, and the 
tendency of increasing  as D increases is seen in 
each method. From this relationship, D can be 
estimated by  at X = x at least when the defect is 
at (0, 0). 

To evaluate relationship between defect 
position (x, y) and , a defect of D = 5 mm was 
located at (x, 0) or (0, y) and varied x or y. Figure 
3(c) shows TOF profile at (x, 0), x =0, 30, 45, and 
Fig. 3(d) shows the relationship between x and  
at X = x. In Fig. 3(c), the peak position of TOF 
profile is shifted as the defect position x shifts. This 
means that defect position in the x direction can be 
estimated. In Fig. 3(d), deviation of  in bottom 
echo is larger than that in transmission method. This 
may be caused by the interference between the echo 
and reflected wave from surface of a billet (x = 50), 
and the effect becomes larger at bottom echo than 
transmitted wave. From this relationship, the error 
in the estimation of defect size based on Fig. 3(b) 
becomes larger at x > 25. 

Figure 3(e) shows TOF profile at (0, y), y 
=-30, 0, 30, and Fig. 3(f) shows the relationship 
between y and  at X = x = 0 with D = 5 mm. In 
Fig. 3(e),  varies as y varies even if the defect 
size is the same. In Fig. 3(f),  of bottom echo 
increases as y increases. In the range of y > 0, 
deviation of  of bottom echo becomes large, and 
the error of defect size estimation based on Fig. 
3(b) becomes large. Although  of transmitted 
wave at y and –y are the same as each other, that of 
bottom echoes take different values. This suggests 
the possibility of estimation of defect position y. 

However,  are affected by not only D but also x 
and y. Therefore, other features may be used for 
precise estimation of defect size and position. 

 
4. Conclusion 

In this study, the relationship between defect 
size, position, and TOF deviation in bottom echo 
are numerically investigated for estimating defect 
size and position in a billet. Defect size can be 
estimated if is in a limited area by the proposed 
method. Although the effect of defect position 
appears in TOF deviation, we may use other feature 
values of TOF profile to know defect position and 
estimate size precisely. 
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Fig. 3  Deviation of TOF  when the defect size D 
or position (x, y) are varied: (a) TOF profile at the D = 
2, 5, 8 mm, (b) relationship between D and , (c) 
TOF profile at x = 0, 30, 45 and y = 50, (d) 
relationship between x and , (e) TOF profile at x = 
50 and y = -30, 0 30, and (f) relationship between y 
and . 

 
 

Fig. 2  Simulation condition. 
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acoustic energy in the AT-cut quartz resonator. 
Besides, from the frequency response shown in Fig. 
6, the AT-cut quartz resonator with the phononic 
crystals has a lower impedance of 8.51 Ω than the 
one with no phononic crystal. Note that the 3 rows 
of the designed wolfram-pillar phononic crystals 
are enough to significantly reducing anchor loss of 
AT-cut quartz resonators.  

5. Conclusions 
The square-lattice wolfram-pillar phononic 

crystals were utilized for trapping acoustic energy 
and reducing anchor loss of AT-cut quartz 
resonators. Finite element analyses of the AT-cut 
quartz resonators with the phononic crystals and 
two lossy epoxy attachments were implemented for 
evaluating the isolation performance of the 
phononic crystals herein. Results show the quartz 
resonator with the wolfram-pillar phononic crystals 
exhibits a good energy confinement inside electrode 
area and a small impedance. Although the air-hole 
phononic crystals have a better energy trapping 
performance [6], the AT-cut quartz resonator with 
wolfram-pillar phononic crystals has more robust 
impact strength. Therefore, the square-lattice 
wolfram-pillar phononic crystal is valid for 
reducing anchor loss of an AT-cut quartz resonator. 
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Table I Material constants of epoxy in simulation.  

Young’s modulus (GPa) 3.9379 
Poisson ratio 0.3769 
Density (kg/m3) 
Loss 

1157.8 
10-4 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Illustration of an AT-cut quartz resonator with 
phononic crystals and two lossy epoxy attachments. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 TSM mode shape of the AT-cut quartz resonator 
with no phononic crystal. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Band structure of a square-lattice wolfram-pillar 
phononic crystal plate. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 TSM mode shape of the AT-cut quartz resonator 
with square-lattice wolfram-pillar phononic crystals. 


