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1. Introduction 
Studies have ever been made for the realization of the 
abdominal visceral fat cross-sectional inspection based 
on the ultrasonic tomography method. 1,2,3 The technique 
is based on the sound wave travel time data observed by 
mechanically scanning the ultrasound transmitter and 
receiver pairs on the abdominal circumference. It is 
intended to reproduce the abdominal sectional sound 
speed image information. The method has difficulty in 
that the number of observation data is extremely small 
compared to the number of pixels in the image. 
Moreover, part of the data passing through the spine is 
missing. It is necessary to encounter the ill-conditioned 
incomplete tomography problem. In this study, we 
propose a regularized ART (Algebraic Reconstruction 
Technique) algorithm to address the problem. In addition, 
examinations are carried out to demonstrate the validity 
of the proposed method. 
2. Principle and method 
2.1 Relationship between measured travel time and 
objective sound speed distribution 
We assume that sound wave travel time T are measured 
between a facing transmitter and receiver around the 
abdominal cross-section medium with sound speed c(x,y). 
Aside from this, background travel time T0 are prepared 
corresponding to the data transmitted through the 
medium with uniform sound speed c0. The transmitter 
and receiver are moved to multiple points on the body 
surface for the measurement of the travel time Ti of the 
sound wave propagated along the path li (i=1,..,M). We 
define the time lag between Tj and T0 as τi=Ti−T0, and the 
inverse sound speed difference between the target and 
background medium as f=1/c−1/c0. Then, the time lag τi 
along the i-th path is represented as a path integration of 
the object f as, 

                                         (1) 
Note that path li is a straight line connecting the i-th 
transmitter and receiver positions under the assumption of 
a straight propagation model. In this case, T0 is related to 
the transmitter and receiver distance L as T0=L/c0. Based 
on the assumptions, the solution of eq.(1) is considered 
for obtaining the inverse sound velocity f in the medium 
from the observation data τi. 

2.2 Discretization of observation equation 
We represent the image f on the continuous coordinates 
(x,y) with the sampled values fj on the discrete grid 
points (xj,yj) (j=1,..,N) as 
 
                                (2) 
where αj is interpolation function. 
By substituting eq.(2) into eq.(1), it can be rewritten in a 
discrete algebraic equations as, 
 

(3) 
where Aij is the following matrix: 

(4) 
 
In this study, following Gaussian radial basis function 
(RBF) is used as an interpolation function:  
 
                                      (5) 
 
where σ is a shape parameter of RBF.  
2.3 Solution of algebraic equation 
In the present problem, number of path M is extremely 
small compared to that of pixels N (i.e., M ≪ N), 
moreover, part of the data passing through the spine is 
missing. Therefore, direct solution of eq.(3) cannot be 
obtained. To this end, the problem is replaced to the 
minimization of the following cost function J. 

(6)
where τ and f are the vectors with entity τi and fj, 
respectively, Α is matrix with entity Aij, and subscript T 
denotes the transpose. The first term in the right-hand 
side of eq.(6) represents the error between observation 
data τ and the calculated one with substitution f into the 
model equation (3). On the other hand, the second term 
is a regularization one to suppress the divergence of the 
solution. A regularization parameter λ determines the 
weight between the two. Starting from initial fj,0, update 
calculation of eq.(7) is repeated until it converged to 
constant fixed value.

(7) 
where the path number i is related to the iteration number 
k with i=k(mod M)+1 and µ is a parameter to control the 
speed of the convergence.  

2.4 Determination of sound propagation path 
The body surface data which is measured by laser range 
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In these equations, 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Here, T and 𝛤𝛤  are the transmission 

coefficients and reflection coefficients, respectively. 
In the CIP method, the interface conditions between 
different media are defined as above equations. 
Hence, respective procedure in the y-direction as 
well as in the x-direction can be applied. 

4. Computational results 
Calculation parameters used in the 

calculations are summarized in table 1. We 
compared simulation results using the CIP method 
and the FDTD method[4] by changing Z and c of 
Media 2. 

Figure 1 shows the sound pressure 
distribution obtained by the CIP method and The 
FDTD method at n = 2000 time step. In this 
computation, we assume  = 0.5 (Z2=3Z1) and c2 
= 1/3c1. We can ascertain the reflected waves from 
the interface in both figures.  

Figures 2 shows the amplitude ratio of the 
input wave and reflected wave against points per 
wavelength (PPW) at each angle. Results by the 
CIP method, the FDTD method and theoretical 
value are depicted in these figures. In Fig. 2 (a), we 
set  = 0.8 (Z2=9Z1) and c2 = 1/3c1. We also 
assume that  = 0.8 (Z2=9Z1) and c2 = c1 in (b), 
and that  = 0.5 (Z2=3Z1) and c2 = 1/3c1 in (c). 

From Fig. 2 (b), we can ascertain results of 
both the CIP method and FDTD method become 
different from the theoretical value as the angle is 
large. In Fig. 2 (a) and (c), it is clarified that the 
error of the CIP method is smaller than that of the 
FDTD method. On the other hand, we can see the 
difference between calculated results and 
theoretical value as reflection coefficient is larger. 

 
5. Conclusion 
      We examined the treatment of interface 
between different media for sound field simulation 
using CIP method. We apply the conditions to 
2-dimmensional computation of sound fields and 
evaluate each interface condition. 
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∆𝑥𝑥 grid size (x-direction) 0.05[m] 
∆𝑦𝑦 grid size (y-direction) 0.05[m] 
∆𝑡𝑡 time step 50[μs] 
NX number of grid (x-direction) 3001 
NY number of grid (y-direction) 3001 
c Sound speed (Media 1) 343[m/s] 
Z The characteristic impedance 

(Media1) 
415.03 

[Pa*kg/m3] 

𝐹𝐹𝑥𝑥1−𝑛𝑛 (𝑖𝑖0) = 𝛤𝛤12𝐹𝐹𝑥𝑥1+𝑛𝑛 (𝑖𝑖0) + 𝑇𝑇21𝐹𝐹𝑥𝑥2−𝑛𝑛 (𝑖𝑖0) (12) 

𝐺𝐺𝑥𝑥2+𝑛𝑛 (𝑖𝑖0) = 𝑇𝑇′12𝐺𝐺𝑥𝑥1+𝑛𝑛 (𝑖𝑖0) + 𝛤𝛤′21𝐺𝐺𝑥𝑥2−𝑛𝑛 (𝑖𝑖0) (13) 

𝐺𝐺𝑥𝑥1−𝑛𝑛 (𝑖𝑖0) = 𝛤𝛤′12𝐺𝐺𝑥𝑥1+𝑛𝑛 (𝑖𝑖0) + 𝑇𝑇′21𝐺𝐺𝑥𝑥2−𝑛𝑛 (𝑖𝑖0) (14) 

𝑇𝑇12 =
2𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2
, 𝛤𝛤12 =

𝑍𝑍2 − 𝑍𝑍1
𝑍𝑍1 + 𝑍𝑍2

, (15) 

𝑇𝑇21 =
2𝑍𝑍1

𝑍𝑍1 + 𝑍𝑍2
, 𝛤𝛤21 =

𝑍𝑍1 − 𝑍𝑍2
𝑍𝑍1 + 𝑍𝑍2

, (16) 

𝑇𝑇′12 =
𝑐𝑐1
𝑐𝑐2
𝑇𝑇′12, 𝑇𝑇′21 =

𝑐𝑐1
𝑐𝑐1
𝑇𝑇′21, (17) 

𝛤𝛤′12 = −𝛤𝛤12, 𝛤𝛤′12 = −𝛤𝛤12. (18) 

 

Fig. 1 Spatial distribution of sound pressure used in 
the CIP method (left) and the FDTD method (right).  

(b) 

(c) 
Fig. 2 Calculated results (a)𝛤𝛤12 = 0.8 and c2 = 1/3c1. 
(b) 𝛤𝛤12 = 0.8 and c2 = c1. (c) 𝛤𝛤12 = 0.5 and c2 = 1/3c1. 

Table 1 Value of the constant used in the analysis 
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sensor is used for the avoidance of the spine and 
determination of the sound propagation paths including 
the contact points of the transceivers on the body surface. 
Determination procedure is as shown in Fig.1. That is, 
the transceiver pair is translated along transverse 
direction with equal step ∆x starting from right and left 
edges of the spine circle (Fig.1(b)). By this means, paths 
intersecting the spine area are avoided. The similar 
procedures are repeated until they are completed over the 
range between 0 and 180 degree with step ∆θ.  
Eventually, entire sound propagation paths were 
determined (Fig.1(c)). 

 

Fig.1 Determination of sound propagation path: (a) 
body surface data collected by the laser range sensor, 
(b) parallel translation paths avoiding the spine area, (c) 
entire paths after the iteration of the similar procedure 
at various rotated angle. 

3 Test examination 
3.1 Method 
An abdominal numerical phantom (width: 420mm × 
height: 265mm) as shown in Fig.2 was prepared. The 
sound speeds in each areas, muscle, fat, intestine, etc., 
are as shown in the figure. The center position of the 
avoidance circle of the spine was set at the (-3 mm, -5 
mm), and radius 50 mm. According to the method 
described in 2.4, sound propagation paths were 
determined. Where, maximum contact angle was set at 
φmax=60 deg., angle step of rotation ∆θ=10 deg., 
translation step ∆x=5mm, and total number of paths 
M=760. The travel time lag τi for each path was 
calculated based on the model eq.(1). The ART algorithm 
shown in 2.3 was applied to the simulation data. 
Objective 
square area 
with a side 
W=450 mm 
was set 
around the 
phantom, 
and 
discretized 
with N = 
129x129 pixels. On that condition, inverse sound 
velocity image fj was reconstructed. 
3.2 Optimization of image reconstruction parameter 
A. Control parameter µ  By selecting the parameter 
µ between 0 and 1, iteration calculation of eq.(7) is 
known to converge in a fixed solution. When µ is 
selected closer to 1, convergent speed is fast, but at 
increased risk for converging in a divergent wrong 

solution. In opposite case of µ close to 0, it becomes a 
contrary situation. Taking these things into consideration, 
we selected µ at 0.05. 
B. RBF interpolation parameter σ Reconstructed images 
are as shown in Fig.3, where RBF interpolation shape 
parameter σ =σ/( √2 W) is changed at three different 
values. As noted above µ is set at 0.05, and λ is set at 
0.005 based on the later examination. For small value of 
σ=0.04, streak artifact is emerged due to the sparseness 
of the path. On the contrary, for large value of σ=0.16, 
definition of the image is deteriorated, instead of 
suppression of streak artifact. Eventually, for 
intermediate value of σ=0.1, image with reasonably high 
definition is obtained under the preventing condition of 
streak artefact generation. 
C. Regularization parameter λ Under the fixed condition 
of µ=0.05 and σ =0.1, the reconstructed images are 
compared subject to the three different regularization 
parameters λ=0.0, 0.005 and 0.03, as shown in Fig.4. For 
small value of λ=0.0, accuracies of sound speed in each 
region are good but spotty artifacts are generated. On the 
contrary, for large value of λ=0.03, artifacts are 
suppressed, but contrast of sound speed is decreased. For 
intermediate value of λ=0.005, the results are obtained 
showing a good performance both for the accuracy of 
sound speed and the suppression of artifact.  

 
 

Fig.3 Reconstructed results for changing value of 
(a)	σ=0.04, (b)	σ=0.1, and (c)	σ=0.16. 

 
 
 

Fig.4 Reconstructed results for changing value of 
(a)λ=0.0, (b)λ=0.005, and (c)λ=0.03. 
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Fig.2 Abdominal numerical phantom. 


